Archives of Microbiology

, Volume 191, Issue 4, pp 311–318 | Cite as

Root nodule bacteria isolated from South African Lotononis bainesii, L. listii and L. solitudinis are species of Methylobacterium that are unable to utilize methanol

  • Julie Kaye Ardley
  • Graham W. O’Hara
  • Wayne G. Reeve
  • Ron J. Yates
  • Michael J. Dilworth
  • Ravi P. Tiwari
  • John G. Howieson
Original Paper


The South African legumes Lotononis bainesii, L. listii and L. solitudinis are specifically nodulated by highly effective, pink-pigmented bacteria that are most closely related to Methylobacterium nodulans on the basis of 16S rRNA gene homology. Methylobacterium spp. are characterized by their ability to utilize methanol and other C1 compounds, but 11 Lotononis isolates neither grew on methanol as a sole carbon source nor were able to metabolize it. No product was obtained for PCR amplification of mxaF, the gene encoding the large subunit of methanol dehydrogenase. Searches for methylotrophy genes in the sequenced genome of Methylobacterium sp. 4-46, isolated from L. bainesii, indicate that the inability to utilize methanol may be due to the absence of the mxa operon. While methylotrophy appears to contribute to the effectiveness of the Crotalaria/M. nodulans symbiosis, our results indicate that the ability to utilize methanol is not a factor in the Lotononis/Methylobacterium symbiosis.


Methylobacterium Lotononis Methylotrophy Root nodule bacteria 


  1. Abanda-Nkpwatt D, Musch M, Tschiersch J, Boettner M, Schwab W (2006) Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J Exp Bot 57:4025–4032. doi:10.1093/jxb/erl173 PubMedCrossRefGoogle Scholar
  2. Amaratunga K, Goodwin PM, O’Connor CD, Anthony C (1997) The methanol oxidation genes mxaFJGIR(S)ACKLD in Methylobacterium extorquens. FEMS Microbiol Lett 146:31–38. doi:10.1111/j.1574-6968.1997.tb10167.x PubMedCrossRefGoogle Scholar
  3. Anthony C (1996) Quinoprotein-catalysed reactions. Biochem J 320:697–711PubMedGoogle Scholar
  4. Basile DV, Basile MR, Li QY, Corpe WA (1985) Vitamin B12-stimulated growth and development of Jungermannia leiantha Grolle and Gymnocolea inflata (Huds.) Dum. (Hepaticae). Bryologist 88:77–81CrossRefGoogle Scholar
  5. Belgian Co-ordinated Collection of Microorganisms/Laboratorium voor Microbiologie (1998) Bacterial culture media catalogue. Universiteit Gent, GentGoogle Scholar
  6. Chistoserdova L, Chen SW, Lapidus A, Lidstrom ME (2003) Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 185:2980–2987. doi:10.1128/JB.185.10.2980-2987.2003 PubMedCrossRefGoogle Scholar
  7. Corpe WA, Rheem S (1989) Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol Ecol 62:243–249. doi:10.1111/j.1574-6968.1989.tb03698.x CrossRefGoogle Scholar
  8. Gallego V, Garcia MT, Ventosa A (2006) Methylobacterium adhaesivum sp. nov., a methylotrophic bacterium isolated from drinking water. Int J Syst Evol Microbiol 56:339–342. doi:10.1099/ijs.0.63966-0 PubMedCrossRefGoogle Scholar
  9. Goodwin PM, Anthony C (1998) The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv Microb Physiol 40:1–80PubMedCrossRefGoogle Scholar
  10. Green PN (1992) The Genus Methylobacterium. In: Balows A, Trüper HG, Dworkin M, Harder W, Schliefer KH (eds) The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. Springer, New York, pp 2342–2349Google Scholar
  11. Holland MA, Polacco JC (1994) PPFMs and other covert contaminants—is there more to plant physiology than just plant. Annu Rev Plant Physiol Plant Mol Biol 45:197–209. doi:10.1146/annurev.pp.45.060194.001213 CrossRefGoogle Scholar
  12. Howieson JG, Ewing MA (1986) Acid tolerance in the Rhizobium meliloti-Medicago symbiosis. Aust J Agric Res 37:153–155. doi:10.1071/AR9860055 CrossRefGoogle Scholar
  13. Howieson JG, Ewing MA, D’Antuono MF (1988) Selection for acid tolerance in Rhizobium meliloti. Plant Soil 105:179–188CrossRefGoogle Scholar
  14. Ivanova EG, Doronina NV, Shepelyakovskaya AO, Laman AG, Brovko FA, Trotsenko YA (2000) Facultative and obligate aerobic methylobacteria synthesize cytokinins. Microbiology 69:646–651. doi:10.1023/A:1026693805653 CrossRefGoogle Scholar
  15. Jaftha JB, Strijdom BW, Steyn PL (2002) Characterization of pigmented methylotrophic bacteria which nodulate Lotononis bainesii. Syst Appl Microbiol 25:440–449. doi:10.1078/0723-2020-00124 PubMedCrossRefGoogle Scholar
  16. Jordan DC (1982) Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139. doi:10.1099/00207713-32-1-136 Google Scholar
  17. Jourand P, Renier A, Rapior S, de Faria SM, Prin Y, Galiana A, Giraud E, Dreyfus B (2005) Role of methylotrophy during symbiosis between Methylobacterium nodulans and Crotalaria podocarpa. Mol Plant Microbe Interact 18:1061–1068. doi:10.1094/MPMI-18-1061 PubMedCrossRefGoogle Scholar
  18. Kato Y, Asahara M, Goto K, Kasai H, Yokota A (2008) Methylobacterium persicinum sp. nov., Methylobacterium komagatae sp. nov., Methylobacterium brachiatum sp. nov., Methylobacterium tardum sp. nov. and Methylobacterium gregans sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 58:1134–1141. doi:10.1099/ijs.0.65583-0 PubMedCrossRefGoogle Scholar
  19. Lidstrom ME (2006) Aerobic methylotrophic prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria: ecophysiology and biochemistry. Springer, New York, pp 618–634Google Scholar
  20. Lodwig E, Poole P (2003) Metabolism of Rhizobium bacteroids. Crit Rev Plant Sci 22:37–78. doi:10.1080/0735268031878372 CrossRefGoogle Scholar
  21. Madhaiyan M, Poonguzhali S, Senthilkumar M, Seshadri S, Chung HY, Yang JC, Sundaram S, Sa TM (2004) Growth promotion and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylobacterium spp. Bot Bull Acad Sinica 45:315–324Google Scholar
  22. Marx CJ, Chistoserdova L, Lidstrom ME (2003) Formaldehyde-detoxifying role of the tetrahydromethanopterin-linked pathway in Methylobacterium extorquens AM1. J Bacteriol 185:7160–7168. doi:10.1128/JB.185.23.7160-7168.2003 PubMedCrossRefGoogle Scholar
  23. Miller JA, Kalyuzhnaya MG, Noyes E, Lara JC, Lidstrom ME, Chistoserdova L (2005) Labrys methylaminiphilus sp. nov., a novel facultatively methylotrophic bacterium from a freshwater lake sediment. Int J Syst Evol Microbiol 55:1247–1253. doi:10.1099/ijs.0.63409-0 PubMedCrossRefGoogle Scholar
  24. McDonald IR, Kenna EM, Murrell JC (1995) Detection of methanotrophic bacteria in environmental samples with the PCR. Appl Environ Microbiol 61:116–121PubMedGoogle Scholar
  25. Nash T (1953) The colorimetric estimation of formaldehyde by means of the Hantsch reaction. Biochem J 55:416–421PubMedGoogle Scholar
  26. Norris DO (1958) A red strain of Rhizobium from Lotononis bainesii Baker. Aust J Agric Res 9:629–632. doi:10.1071/AR9580629 CrossRefGoogle Scholar
  27. O’Brien JR, Murphy JM (1993) Identification and growth characteristics of pink pigmented oxidative bacteria, Methylobacterium mesophilicum and biovars isolated from chlorinated and raw water supplies. Microbios 73:215–227PubMedGoogle Scholar
  28. O’Hara GW, Goss TJ, Dilworth MJ, Glenn AR (1989) Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Appl Environ Microbiol 55:1870–1876PubMedGoogle Scholar
  29. Obendorf RL, Koch JL, Gorecki RJ, Amable RA, Aveni MT (1990) Methanol accumulation in maturing seeds. J Exp Bot 41:489–495CrossRefGoogle Scholar
  30. Omer ZS, Tombolini R, Gerhardson B (2004) Plant colonization by pink-pigmented facultative methylotrophic bacteria (PPFMs). FEMS Microbiol Ecol 47:319–326. doi:10.1016/S0168-6496(04)00003-0 CrossRefPubMedGoogle Scholar
  31. Patt TE, Cole GC, Hanson RS (1976) Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 26:226–229. doi:10.1099/00207713-26-2-226 CrossRefGoogle Scholar
  32. Ryu J, Madhaiyan M, Poonguzhali S, Yim W, Indiragandhi P, Kim K, Anandham R, Yun J, Kim KH, Sa T (2006) Plant growth substances produced by Methylobacterium spp. and their effect on tomato (Lycopersicon esculentum L.) and red pepper (Capsicum annuum L.) growth. J Microbiol Biotechnol 16:1622–1628Google Scholar
  33. Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220. doi:10.1128/JB.183.1.214-220.2001 PubMedCrossRefGoogle Scholar
  34. Sy A, Timmers ACJ, Knief C, Vorholt JA (2005) Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microbiol 71:7245–7252. doi:10.1128/AEM.71.11.7245-7252.2005 PubMedCrossRefGoogle Scholar
  35. Trotsenko YA, Ivanova EG, Doronina NV (2001) Aerobic methylotrophic bacteria as phytosymbionts. Microbiology 70:623–632. doi:10.1023/A:1013167612105 CrossRefGoogle Scholar
  36. Van Aken B, Peres CM, Doty SL, Yoon JM, Schnoor JL (2004) Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoides × nigra DN34). Int J Syst Evol Microbiol 54:1191–1196. doi:10.1099/ijs.0.02796-0 PubMedCrossRefGoogle Scholar
  37. Van Wyk BE (1991) A synopsis of the genus Lotononis (Fabaceae: Crotolarieae). Contributions from the Bolus Herbarium No. 14. Rustica Press, Cape TownGoogle Scholar
  38. Van Wyk BE, Verdoorn GH (1990) Alkaloids as taxonomic characters in the tribe Crotalarieae (Fabaceae). Biochem Syst Ecol 18:503–516CrossRefGoogle Scholar
  39. Vogel AI (1962) A text-book of quantitative inorganic analysis. Longman Group, LondonGoogle Scholar
  40. Wood PJ, Siddiqui IR (1971) Determination of methanol and its application to measurement of pectin ester content and pectin methyl esterase activity. Anal Biochem 39:418–428PubMedCrossRefGoogle Scholar
  41. Yates RJ, Howieson JG, Reeve WG, Nandasena K, Law IJ, Bräu L, Ardley JK, Nistelberger H, Real D, O’Hara GW (2007) Lotononis angolensis forms nitrogen fixing, lupinoid nodules with phylogenetically unique fast-growing, pink-pigmented bacteria which do not nodulate L. bainesii or L. listii. Soil Biol Biochem 39:1680–1688. doi:10.1016/j.soilbio.2007.01.025 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Julie Kaye Ardley
    • 1
  • Graham W. O’Hara
    • 1
  • Wayne G. Reeve
    • 1
  • Ron J. Yates
    • 1
    • 2
  • Michael J. Dilworth
    • 1
  • Ravi P. Tiwari
    • 1
  • John G. Howieson
    • 1
    • 2
  1. 1.Centre for Rhizobium Studies, School of Biological Sciences and BiotechnologyMurdoch UniversityPerthAustralia
  2. 2.Department of Agriculture Western AustraliaBaron-Hay CourtSouth PerthAustralia

Personalised recommendations