Advertisement

Archives of Microbiology

, Volume 190, Issue 6, pp 611–622 | Cite as

Effect of a highly concentrated lipopeptide extract of Bacillus subtilis on fungal and bacterial cells

  • Augusto EtchegarayEmail author
  • Carolina de Castro Bueno
  • Itamar Soares de Melo
  • Siu Mui Tsai
  • Marli de Fátima Fiore
  • Maria Estela Silva-Stenico
  • Luiz Alberto Beraldo de Moraes
  • Omar Teschke
Original Paper

Abstract

Lipopeptides produced by Bacillus subtilis are known for their high antifungal activity. The aim of this paper is to show that at high concentration they can damage the surface ultra-structure of bacterial cells. A lipopeptide extract containing iturin and surfactin (5 mg mL−1) was prepared after isolation from B. subtilis (strain OG) by solid phase extraction. Analysis by atomic force microscope (AFM) showed that upon evaporation, lipopeptides form large aggregates (0.1–0.2 μm2) on the substrates silicon and mica. When the same solution is incubated with fungi and bacteria and the system is allowed to evaporate, dramatic changes are observed on the cells. AFM micrographs show disintegration of the hyphae of Phomopsis phaseoli and the cell walls of Xanthomonas campestris and X. axonopodis. Collapses to fungal and bacterial cells may be a result of formation of pores triggered by micelles and lamellar structures, which are formed above the critical micelar concentration of lipopeptides. As observed for P. phaseoli, the process involves binding, solubilization, and formation of novel structures in which cell wall components are solubilized within lipopeptide vesicles. This is the first report presenting evidences that vesicles of uncharged and negatively charged lipopeptides can alter the morphology of gram-negative bacteria.

Keywords

Antimicrobial peptides Non-ribosomal peptides Lipopeptides Iturin Surfactin Atomic force microscope Bacillus subtilis Xanthomonas 

Abbreviations

AFM

Atomic force microscope

NRPS

Non-ribosomal peptide synthetase

OM

Optical microscopy

PKS

Polyketide synthase

PE

Plant emergence

PH

Plant height

PDW

Plant dry weight

Xac

Xanthomonas axonopodis pv. citri

Xcc

Xanthomonas campestris pv. campestris

Notes

Acknowledgments

This research has been funded by the Fundação de Pesquisa de São Paulo (Fapesp grants 96/11193-7 and 03/12529-4) and the Conselho Nacional de Pesquisa (CNPq). We would like to thank the valuable research assistance of L. O. Bonugli and J. R. Castro. M. E. Silva-Stenico was the recipient of postdoctoral fellowship from FAPESP (Grant 2004/16042-5)

References

  1. Allende D, Simon SA, McIntosh TJ (2005) Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. Biophys J 88:1828–1837. doi: 10.1529/biophysj.104.049817 PubMedCrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. Aranda FJ, Teruel JA, Ortiz A (2005) Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A. Biochim Biophys Acta 1713:51–6. doi: 10.1016/j.bbamem.2005.05.003 PubMedCrossRefGoogle Scholar
  4. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523PubMedCrossRefGoogle Scholar
  5. Bonmatin J-M, Laprévote O, Peypoux F (2003) Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb Chem High Throughput Screen 6:541–556PubMedGoogle Scholar
  6. Besson F, Peypoux F, Michel G, Delcambe L (1976) Characterization of iturin A in antibiotics from various strains of Bacillus subtilis. J Antibiot 29:1043–1049PubMedGoogle Scholar
  7. Christofoletti A (1999) Modelagem de Sistemas Ambientais. Edgard Blucher, São PauloGoogle Scholar
  8. Cook RJ, Thomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim DS (1995) Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci USA 92:4197–4201PubMedCrossRefGoogle Scholar
  9. da Silva A Jr, Teschke O (2003) Effects of the antimicrobial peptide PGLa on live Escherichia coli. Bioch Biophys Acta 1643:95–103. doi: 10.1016/j.bbamcr.2003.10.001 CrossRefGoogle Scholar
  10. Dufrêne YF (2002) Atomic force microscopy, a powerful tool in microbiology. J Bacteriol 184:5205–5213. doi: 10.1128/JB.184.19.5205-5213.2002 PubMedCrossRefGoogle Scholar
  11. Etchegaray A, Rabello E, Dieckmann R, Moon DH, Fiore MF, von Döhren H, Tsai SM, Neilan BA (2004a) Algicide production by the filamentous cyanobacterium Fischerella sp. CENA 19. J Appl Phycol 16:237–243. doi: 10.1023/B:JAPH.0000048509.77816.5e CrossRefGoogle Scholar
  12. Etchegaray A, Silva-Stenico ME, Moon DH, Tsai SM (2004b) In silico analysis of nonribosomal peptide synthetases of Xanthomonas axonopodis pv. citri: identification of putative siderophore and lipopeptide biosynthetic genes. Microbiol Res 159:425–437. doi: 10.1016/j.micres.2004.09.009 PubMedCrossRefGoogle Scholar
  13. Gong M, Wang JD, Zhang J, Yang H, Lu XF, Pei Y, Cheng JQ (2006) Study of the antifungal ability of Bacillus subtilis strain PY-1 in vitro and identification of its antifungal substance (iturin A). Acta Biochim Biophys Sin 38:233–240. doi: 10.1111/j.1745-7270.2006.00157.x PubMedCrossRefGoogle Scholar
  14. Grau A, Gómez-Fernández JC, Peypoux F, Ortiz A (2001) Aggregational behavior of aqueous dispersions of the antifungal lipopeptide iturin A. Peptides 22:1–5. doi: 10.1016/S0196-9781(00)00350-8 PubMedCrossRefGoogle Scholar
  15. Hancock RE, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemoter 43:1317–1323Google Scholar
  16. Huang X, Wei Z, Zhao G, Gao X, Yang S, Cui Y (2007) Optimization of sterilization of Escherichia coli in milk by surfactin and fengycin using a response surface method. Curr Microbiol 56:376–381. doi: 10.1007/s00284-007-9066-8 PubMedCrossRefGoogle Scholar
  17. Hwang YH, Park BK, Lim JH, Kim MS, Park SC, Hwang MH, Yun HI (2007) Lipopolysaccharide-binding and neutralizing activities of surfactin C in experimental models of septic shock. Eur J Pharmacol 556:166–171. doi: 10.1016/j.ejphar.2006.10.031 PubMedCrossRefGoogle Scholar
  18. Ivanova EP, Vysotskii MV, Svetashev VI, Nedashkovskaya OI, Gorshkova NM, Mikhailov VV, Yumoto N, Shigeri Y, Taguchi T, Yoshikawa S (1999) Characterization of Bacillus strains of marine origin. Int Microbiol 2:267–271PubMedGoogle Scholar
  19. Kim JG, Park BK, Yoo CH, Jeon E, Oh J, Hwang I (2003) Characterization of the Xanthomonas axonopodis pv. glycines Hrp pathogenicity island. J Bacteriol 185:3155–3166. doi: 10.1128/JB.185.10.3155-3166.2003 PubMedCrossRefGoogle Scholar
  20. Knoblich A, Matsumoto M, Ishiguro R, Murata K, Fujiyoshi Y, Ishigami Y, Osman M (1995) Electron cryo-microscopic studies on micellar shape and size of surfactin, an anionic lipopeptide. Coll Surf Biointerf 5:43–48. doi: 10.1016/0927-7765(95)01207-Y CrossRefGoogle Scholar
  21. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  22. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematic. Chichester, Wiley, pp 115–175Google Scholar
  23. Legrand P, Romero EA, Cohen BE, Bolard J (1992) Effects of aggregation and solvent on the toxicity of amphotericin B to human erythrocytes. Antimicrob Agents Chemother 36:2518–2522PubMedGoogle Scholar
  24. Leclère V, Béchet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584PubMedCrossRefGoogle Scholar
  25. Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicol 8:151–74CrossRefGoogle Scholar
  26. Maget-Dana R, Ptak M (1995) Interactions of surfactin with membrane models. Biophys J 68:1937–1943PubMedCrossRefGoogle Scholar
  27. Maget-Dana R, Thimon L, Peypoux F, Ptak M (1992) Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74:1047–1051PubMedCrossRefGoogle Scholar
  28. Monteiro L, Mariano RLR, Souto-Maior AM (2005) Antagonism of Bacillus spp. against Xanthomonas campestris. Braz Arch Biol Technol 48:23–29CrossRefGoogle Scholar
  29. Meincken M, Holroyd DL, Rautenbach M (2005) Atomic force microscopy study of the effect of antimicrobial peptides on the cell envelope of Escherichia coli. Antimicrob agents chemother 49:4085–4092. doi: 10.1128/AAC.49.10.4085-4092.2005 PubMedCrossRefGoogle Scholar
  30. Neilan BA, Jacobs D, Del Dot T, Blackall LL, Hawkins PR, Cox PT, Goodman AE (1997) rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 47:693–697PubMedCrossRefGoogle Scholar
  31. Nikaido H (2003) Molecular Basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656. doi: 10.1128/MMBR.67.4.593-656.2003 PubMedCrossRefGoogle Scholar
  32. Oren Z, Shai Y (1998) Mode of action of linear amphipathic alpha-helical peptides. Biopolymers 47:451–463PubMedCrossRefGoogle Scholar
  33. Phister TG, O’Sullivan DJ, McKay LL (2004) Identification of bacilysin, chlorotetaine, and iturin A produced by Bacillus sp. strain CS93 isolated from pozol, a Mexican fermented maize dough. Appl Environ Microbiol 70:631–634. doi: 10.1128/AEM.70.1.631-634.2004 PubMedCrossRefGoogle Scholar
  34. Ramakrishnan A, Sadana A (2002) A mathematical analysis using fractals for binding interactions of nuclear estrogen receptors occurring on biosensor surfaces. Anal Biochem 303:78–92. doi: 10.1006/abio.2002.5581 PubMedCrossRefGoogle Scholar
  35. Razafindralambo H, Popineau Y, Deleu M, Hbid C, Jacques P, Tonart P, Paquot M (1997) Surface-active properties of surfactin/iturin A mixtures produced by Bacillus subtilis. Langmuir 13:6026–6031CrossRefGoogle Scholar
  36. Razafindralambo H, Paquot M, Hbid C, Jacques P, Destain J, Thonart P (1993) Purification of antifungal lipopeptides by reversed-phase high-performance liquid chromatography. J Chromatogr 639:81–85PubMedCrossRefGoogle Scholar
  37. Romero D, de Vicente A, Olmos JL, Dávila JC, Pérez-García A (2007) Effect of lipopeptides of antagonistic strains of Bacillus subtilis on the morphology and ultrastructure of the cucurbit fungal pathogen Podosphaera fusca. Appl Microbiol 103:969–976. doi: 10.1111/j.1365-2672.2007.03433.x Google Scholar
  38. Sprencel C, Cao Z, Qi Z, Scott D, Montague M, Ivanoff N, Xu J, Raymond K, Newton S, Klebba P (2000) Binding of ferric enterobactin by the Escherichia coli periplasmic protein FepB. J Bacteriol 182:5359–5364PubMedCrossRefGoogle Scholar
  39. Thimon L, Peypoux F, Wallach J, Michel G (1995) Effect of the lipopeptide antibiotic, iturin A, on morphology and membrane ultrastructure of yeast cells. FEMS Microbiol Lett 128:101–106PubMedCrossRefGoogle Scholar
  40. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  41. Tsuge K, Akiyama T, Shoda M (2001) Cloning, Sequencing, and Characterization of the Iturin A Operon. J Bacteriol 183:6265–6273PubMedCrossRefGoogle Scholar
  42. Tsuge K, Ano T, Shoda M (1996) Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics plipastatin B1 and surfactin in Bacillus subtilis YB8. Arch Microbiol 165:243–251PubMedCrossRefGoogle Scholar
  43. Umezawa H, Aoyagi T, Nishikiori T, Okuyama A, Yamagishi Y, Hamada M, Takeuchi T (1986) Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. I. Taxonomy, production, isolation and preliminary characterization. J Antibiot 39:737–44PubMedGoogle Scholar
  44. Vollenbroich D, Pauli G, Muhsin OZ, Vater J (1997) Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl Environ Microbiol 63:44–49PubMedGoogle Scholar
  45. Zhang L, Dhillon P, Yan H, Farmer S, Hancock REW (2000) Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic membranes of Pseudomonas aeruginosa. Antimicrob agents chemother 44:3317–3321PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Augusto Etchegaray
    • 1
  • Carolina de Castro Bueno
    • 1
  • Itamar Soares de Melo
    • 2
  • Siu Mui Tsai
    • 3
  • Marli de Fátima Fiore
    • 3
  • Maria Estela Silva-Stenico
    • 3
  • Luiz Alberto Beraldo de Moraes
    • 4
  • Omar Teschke
    • 5
  1. 1.Faculdade de QuímicaPUC-CampinasCampinasBrazil
  2. 2.Laboratório de MicrobiologiaEmbrapa Meio AmbienteJaguariunaBrazil
  3. 3.CENA, Universidade de São PauloPiracicabaBrazil
  4. 4.Departamento de QuímicaUniversidade de São PauloRibeirão PretoBrazil
  5. 5.Laboratório de Nanoestruturas e InterfacesInstituto de Física, UNICAMPCampinasBrazil

Personalised recommendations