Archives of Microbiology

, Volume 190, Issue 3, pp 217–230 | Cite as

Genetic tools for Sulfolobus spp.: vectors and first applications



Sulfolobus species belong to the best-studied archaeal organisms but have lacked powerful genetic methods. Recently, there has been considerable progress in the field of Sulfolobus genetics. Urgently needed basic genetic tools, such as targeted gene knockout techniques and shuttle vectors are being developed at an increasing pace. For S. solfataricus knockout systems as well as different shuttle vectors are available. For the genetically more stable S. acidocaldarius shuttle vectors have been recently developed. In this review we summarize the currently available genetic tools and methods for the genus Sulfolobus. Different transformation protocols are discussed, as well as all so far developed knockout systems and Sulfolobus–Escherichia coli shuttle vectors are summarized. Special emphasis is put on the important vector components, i.e., selectable markers and Sulfolobus replicons. Additionally, the information gathered on different Sulfolobus strains with respect to their use as recipient strains is reviewed. The advantages and disadvantages of the different systems are discussed and aims for further improvement of genetic systems are identified.


Shuttle vector Knockouts Selectable markers Archaea Crenarchaea 


  1. Aagaard C, Phan H, Trevisanato S, Garrett RA (1994) A spontaneous point mutation in the single 23S rRNA gene of the thermophilic archaeon Sulfolobus acidocaldarius confers multiple drug resistance. J Bacteriol 176:7744–7747PubMedGoogle Scholar
  2. Aagaard C, Dalgaard JZ, Garrett RA (1995) Intercellular mobility and homing of an archaeal rDNA intron confers a selective advantage over intron-cells of Sulfolobus acidocaldarius. Proc Natl Acad Sci USA 92:12285–12289PubMedCrossRefGoogle Scholar
  3. Aagaard C, Leviev I, Aravalli RN, Forterre P, Prieur D, Garrett RA (1996) General vectors for archaeal hyperthermophiles: strategies based on a mobile intron and a plasmid. FEMS Microbiol Rev 18:93–104PubMedCrossRefGoogle Scholar
  4. Agron PG, Sobecky P, Andersen GL (2002) Establishment of uncharacterized plasmids in Escherichia coli by in vitro transposition. FEMS Microbiol Lett 217:249–254PubMedCrossRefGoogle Scholar
  5. Albers SV, Driessen AJM (2007) Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome. Archaea 2:i–vGoogle Scholar
  6. Albers SV, Jonuscheit M, Dinkelaker S, Urich T, Kletzin A, Tampé R, Driessen AJM, Schleper C (2006) Production of recombinant and tagged proteins in the hyperthermophilic archaeon Sulfolobus solfataricus. Appl Environ Microbiol 72:102–111PubMedCrossRefGoogle Scholar
  7. Allers T, Mevarech M (2005) Archaeal genetics—the third way. Nat Rev Genet 6:58–73PubMedCrossRefGoogle Scholar
  8. Andersson A, Lundgren M, Eriksson S, Rosenlund M, Bernander R, Nilsson P (2006) Global analysis of mRNA stability in the archaeon Sulfolobus. Genome Biol 7:R99PubMedCrossRefGoogle Scholar
  9. Aravalli RN, Garrett RA (1997) Shuttle vectors for hyperthermophilic archaea. Extremophiles 1:183–191PubMedCrossRefGoogle Scholar
  10. Arnold HP, She Q, Phan H, Stedman KM, Prangishvili D, Holz I, Kristiansson JK, Garrett RA, Zillig W (1999) The genetic element pSSVx of the extremely thermophilic crenarchaeon Sulfolobus is a hybrid between a plasmid and a virus. Mol Microbiol 34:217–226PubMedCrossRefGoogle Scholar
  11. Aucelli T, Contursi P, Girfoglio M, Rossi M, Cannio R (2006) A spreadable, non-integrative and high copy number shuttle vector for Sulfolobus solfataricus based on the genetic element pSSVx from Sulfolobus islandicus. Nucleic Acids Res 34:e114PubMedCrossRefGoogle Scholar
  12. Barry RC, Young MJ, Stedman KM, Dratz EA (2006) Proteomic mapping of the hyperthermophilic and acidophilic archaeon Sulfolobus solfataricus P2. Electrophoresis 27(14):2970–2983PubMedCrossRefGoogle Scholar
  13. Barthelme D, Scheele U, Dinkelaker S, Janoschka A, Macmillan F, Albers SV, Driessen AJ, Stagni MS, Bill E, Meyer-Klaucke W, Schünemann V, Tampé R (2007) Structural organization of essential iron-sulfur clusters in the evolutionarily highly conserved ATP-binding cassette protein ABCE1. J Biol Chem 282(19):14598–14607PubMedCrossRefGoogle Scholar
  14. Bartolucci S, Rossi M, Cannio R (2003) Characterization and functional complementation of a nonlethal deletion in the chromosome of a beta-glycosidase mutant of Sulfolobus solfataricus. J Bacteriol 185:3948–3957PubMedCrossRefGoogle Scholar
  15. Beck K, Lipps G (2007) Properties of an unusual DNA primase from an archaeal plasmid. Nucleic Acids Res 35:5635–5645PubMedCrossRefGoogle Scholar
  16. Bell SD, Jaxel C, Nadal M, Kosa PF, Jackson SP (1998) Temperature, template topology, and factor requirements of archaeal transcription. Proc Natl Acad Sci USA 95:15218–15222PubMedCrossRefGoogle Scholar
  17. Berkner S, Lipps G (2007a) Characterization of the transcriptional activity of the cryptic plasmid pRN1 from Sulfolobus islandicus REN1H1 and regulation of its replication operon. J Bacteriol 189:1711–1721PubMedCrossRefGoogle Scholar
  18. Berkner S, Lipps G (2007b) An active nonautonomous mobile element in Sulfolobus islandicus REN1H1. J Bacteriol 189:2145–2149PubMedCrossRefGoogle Scholar
  19. Berkner S, Lipps G (2008) Mutation and reversion frequencies of different Sulfolobus species and strains. Extremophiles 12:263–270PubMedCrossRefGoogle Scholar
  20. Berkner S, Grogan DW, Albers SV, Lipps G (2007) Small multicopy, non-integrative shuttle vectors based on the plasmid pRN1 for Sulfolobus acidocaldarius and Sulfolobus solfataricus, model organisms of the (cren-)archaea. Nucleic Acids Res 449:1–12. doi:10.1093/nar/gkm Google Scholar
  21. Bini E, Dikshit V, Dirksen K, Drozda M, Blum P (2002) Stability of mRNA in the hyperthermophilic archaeon Sulfolobus solfataricus. RNA 8:1129–1136PubMedCrossRefGoogle Scholar
  22. Blount ZD, Grogan DW (2005) New insertion sequences of Sulfolobus: functional properties and implications for genome evolution in hyperthermophilic archaea. Mol Microbiol 55:312–325PubMedCrossRefGoogle Scholar
  23. Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Microbiol 84:54–68Google Scholar
  24. Brügger K, Redder P, She Q, Confalonieri F, Zivancovic Y, Garrett RA (2002) Mobile elements in archaeal genomes. FEMS Microbiol Lett 206:131–141PubMedCrossRefGoogle Scholar
  25. Brügger K, Torarinsson E, Redder P, Chen L, Garrett RA (2004) Shuffling of Sulfolobus genomes by autonomous and non-autonomous mobile elements. Biochem Soc Trans 32:179–183PubMedCrossRefGoogle Scholar
  26. Cammarano P, Teichner A, Londei P, Acca M, Nicolaus B, Sanz JL, Amils R (1985) Insensitivity of archaebacterial ribosomes to protein synthesis inhibitors. Evolutionary implications. EMBO J 4:811–816PubMedGoogle Scholar
  27. Cannio R, Contursi P, Rossi M, Bartolucci S (1998) An autonomously replicating transforming vector for Sulfolobus solfataricus. J Bacteriol 180:3237–3240PubMedGoogle Scholar
  28. Cannio R, Contursi P, Rossi M, Bartolucci S (2001) Thermoadaption of a mesophilic hygromycin B phosphotransferase by directed evolution in hyperthermophilic Archaea: selection of a stable genetic marker for DNA transfer into Sulfolobus solfataricus. Extremophiles 5:153–159PubMedCrossRefGoogle Scholar
  29. Chen L, Brügger K, Skovgaard M, Redder P, Qunxin S, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk H-P, Garrett RA (2005) The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 187:4992–4999PubMedCrossRefGoogle Scholar
  30. Chong PK, Wright PC (2005) Identification and characterization of the Sulfolobus solfataricus P2 proteom. J Proteome Res 4:1789–1798PubMedCrossRefGoogle Scholar
  31. Clore AJ, Stedman KM (2006) The SSV1 viral integrase is not essential. Virology 361:103–111PubMedCrossRefGoogle Scholar
  32. Condo I, Ciammaruconi A, Benelli D, Ruggero D, Londei P (1999) Cis-acting signals controlling translational initiation in the thermophilic archaeon Sulfolobus solfataricus. Mol Microbiol 34:377–384PubMedCrossRefGoogle Scholar
  33. Contursi P, Cannio R, Prato S, Fiorentino G, Rossi M, Bartolucci S (2003) Development of a genetic system for hyperthermophilic Archaea: expression of a moderate thermophilic bacterial alcohol dehydrogenase gene in Sulfolobus solfataricus. FEMS Microbiol Lett 218:115–120PubMedCrossRefGoogle Scholar
  34. Contursi P, Pisani FM, Grigoriev A, Cannio R, Bartolucci S, Rossi M (2004) Identification and autonomous replication capability of a chromosomal replication origin from the archaeon Sulfolobus solfataricus. Extremophiles 8:385–391PubMedCrossRefGoogle Scholar
  35. Cubellis MV, Rozzo C, Montecucchi P, Rossi M (1990) Isolation and sequencing of a new beta-galactosidase-encoding archaebacterial gene. Gene 94:91–94CrossRefGoogle Scholar
  36. Duggin IG, Bell SD (2006) The chromosome replication machinery of the archaeon Sulfolobus solfataricus. J Biol Chem 281:15029–15032PubMedCrossRefGoogle Scholar
  37. Fröls S, Gordon PM, Panlilio MA, Schleper C, Sensen CW (2007) Elucidating the transcription cycle of the UV-inducible hyperthermophilic archaeal virus SSV1 by DNA microarrays. Virology 365:48–59PubMedCrossRefGoogle Scholar
  38. Garrett RA, Redder P, Greve B, Brügger K, Chen L, She Q (2004) Archaeal plasmids. In: Funnel BE, Philips GJ (eds) Plasmid biology. ASM Press, Washington, pp 377–391Google Scholar
  39. Grogan DW (1989) Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. J Bacteriol 171:6710–6719PubMedGoogle Scholar
  40. Grogan DW (1991a) Selectable mutant phenotypes of the extremely thermophilic archaebacterium Sulfolobus acidocaldarius. J Bacteriol 173:7725–7727PubMedGoogle Scholar
  41. Grogan DW (1991b) Evidence that beta-galactosidase of Sulfolobus solfataricus is only one of several activities of a thermostable beta-d-glycosidase. Appl Environ Microbiol 57:1644–1649PubMedGoogle Scholar
  42. Grogan DW (1996) Exchange of genetic markers at extremely high temperatures in the archaeon Sulfolobus acidocaldarius. J Bacteriol 178:3207–3211PubMedGoogle Scholar
  43. Grogan DW (2003) Cytosine methylation by the SuaI restriction-modification system: implications for genetic fidelity in a hyperthermophilic archaeon. J Bacteriol 185:4657–4661PubMedCrossRefGoogle Scholar
  44. Grogan DW, Gunsalus RP (1993) Sulfolobus acidocaldarius synthesizes UMP via a standard de novo pathway: results of a biochemical-genetic study. J Bacteriol 175:1500–1507PubMedGoogle Scholar
  45. Grogan D, Palm P, Zillig W (1990) Isolate B12, which harbours a virus-like element, represents a new species of the archaebacterial genus Sulfolobus, Sulfolobus shibatae, sp. nov. Arch Microbiol 154:594–599Google Scholar
  46. Grogan DW, Carver GT, Drake JW (2001) Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Proc Natl Acad Sci USA 98:7928–7933PubMedCrossRefGoogle Scholar
  47. Hansen JE, Dill AC, Grogan DW (2005) Conjugational genetic exchange in the hyperthermophilic archaeon Sulfolobus acidocaldarius: intragenic recombination with minimal dependence on marker separation. J Bacteriol 187(2):805–809PubMedCrossRefGoogle Scholar
  48. Hasenöhrl D, Lombo T, Kaberdin V, Londei P, Bläsi U (2008) Translation initiation factor a/eIF2γ counteracts 5′ to 3′ mRNA decay in the archaeon Sulfolobus solfataricus. Proc Natl Acad Sci USA 105:2146–2150PubMedCrossRefGoogle Scholar
  49. Hjort K, Bernander R (2001) Cell cycle regulation in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius. Mol Microbiol 40:225–234PubMedCrossRefGoogle Scholar
  50. Huber H, Prangishvili D (2006) Sulfolobales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) Prokaryotes. Springer, New York, pp 23–51CrossRefGoogle Scholar
  51. Jonuscheit M, Martusewitsch E, Stedman KM, Schleper C (2003) A reporter gene system for the hyperthermophilic archaeon Sulfolobus solfataricus based on a selectable and integrative shuttle vector. Mol Microbiol 48:1241–1252PubMedCrossRefGoogle Scholar
  52. Keeling PJ, Klenk H-P, Singh RK, Feeley O, Schleper C, Zillig W, Doolittle WF, Sensen CW (1996) Complete nucleotide sequence of the Sulfolobus islandicus multicopy plasmid pRN1. Plasmid 35:141–144PubMedCrossRefGoogle Scholar
  53. Keeling PJ, Klenk H-P, Singh RK, Schenk ME, Sensen CW, Zillig W, Doolittle WF (1998) Sulfolobus islandicus plasmids pRN1 and pRN2 share distant but common evolutionary ancestry. Extremophiles 2:391–393PubMedCrossRefGoogle Scholar
  54. Kletzin A, Lieke A, Urich T, Charlebois RL, Sensen CW (1999) Molecular Analysis of pDL10 from Acidianus ambivalens reveals a family of related plasmids from extremly thermophilic and acidophilic Archaea. Genetics 152:1307–1314PubMedGoogle Scholar
  55. Kondo S, Yamagishi A, Oshima T (1991) Positive selection for uracil auxotrophs of the sulfur-dependent thermophilic archaebacterium Sulfolobus acidocaldarius by use of 5-fluoroorotic acid. J Bacteriol 173:7698–7700PubMedGoogle Scholar
  56. Korencic D, Ahel I, Schelert J, Sacher M, Ruan B, Stathopoulos C, Blum P, Ibba M, Söll D (2004) A freestanding proofreading domain is required for protein synthesis quality control in Archaea. Proc Natl Acad Sci USA 101:10260–10265PubMedCrossRefGoogle Scholar
  57. Kurosawa N, Grogan DW (2005) Homologous recombination of exogenous DNA with the Sulfolobus acidocaldarius genome: properties and uses. FEMS Microbiol Lett 253:141–149PubMedCrossRefGoogle Scholar
  58. Lipps G (2006) Plasmids and viruses of the thermoacidophilic crenarchaeote Sulfolobus. Extremophiles 10:17–28PubMedCrossRefGoogle Scholar
  59. Lipps G (2007) Plasmids. In: Garrett RA, Klenk H-P (eds) Archaea: evolution, physiology and molecular biology. Oxford, UKGoogle Scholar
  60. Lipps G, Stegert M, Krauss G (2001a) Thermostable and site-specific DNA binding of the gene product ORF56 from the Sulfolobus islandicus plasmid pRN1, a putative archael plasmid copy control protein. Nucleic Acids Res 29:904–913PubMedCrossRefGoogle Scholar
  61. Lipps G, Ibanez P, Stroessenreuther T, Hekimian K, Krauss G (2001b) The protein ORF80 from the acidophilic and thermophilic archaeon Sulfolobus islandicus binds highly site-specifically to double-stranded DNA and represents a novel type of basic leucine zipper protein. Nucleic Acids Res 29:4973–4982PubMedCrossRefGoogle Scholar
  62. Lipps G, Röther S, Hart C, Krauss G (2003) A novel type of replicative enzyme harboring ATPase, primase and DNA polymerase activity. EMBO J 22:2516–2525PubMedCrossRefGoogle Scholar
  63. Lipps G, Weinzierl AO, von Scheven G, Buchen C, Cramer P (2004) Structure of a bifunctional DNA primase-polymerase. Nat Struct Mol Biol 11:157–162PubMedCrossRefGoogle Scholar
  64. Lubelska JM, Jonuscheit M, Schleper C, Albers SV, Driessen AJ (2006) Regulation of expression of the arabinose and glucose transporter genes in the thermophilic archaeon Sulfolobus solfataricus. Extremophiles 10:383–391PubMedCrossRefGoogle Scholar
  65. Lundgren M, Bernander R (2007) Genome-wide transcription map of an archaeal cell cycle. Proc Natl Acad Sci USA 104:2939–2944PubMedCrossRefGoogle Scholar
  66. Martusewitsch E, Sensen CW, Schleper C (2000) High spontaneous mutation rate in the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by transposable elements. J Bacteriol 182:2574–2581PubMedCrossRefGoogle Scholar
  67. Muskhelishvili G, Palm P, Zillig W (1993) SSV1-encoded site-specific recombination system in Sulfolobus shibatae. Mol Gen Genet 237:334–342PubMedGoogle Scholar
  68. Nakamura A, Takakura Y, Kobayashi H, Hoshino T (2005) In vivo directed evolution for thermostabilization of Escherichia coli hygromycin B phosphotransferase and the use of the gene as a selection marker in the host-vector system of Thermus thermophilus. J Biosci Bioeng 100:158–163PubMedCrossRefGoogle Scholar
  69. Norais C, Hawkins M, Hartmann AL, Eisen JA, Myllykallio H, Allers T (2007) Genetic and physical mapping of DNA replication origins in Haloferax volcanii. PLoS Genet 3:e77PubMedCrossRefGoogle Scholar
  70. Peng X, Holz I, Zilling W, Garrett RA, She Q (2000) Evolution of the family of pRN plasmids and their integrase-mediated insertion into the chromosome of the Crenarchaeon Sulfolobus solfataricus. J Mol Biol 303:449–454PubMedCrossRefGoogle Scholar
  71. Prangishvili D, Garrett RA (2005) Viruses of hyperthermophilic Crenarchaea. Trends Microbiol 13:535–542PubMedCrossRefGoogle Scholar
  72. Prangishvili DA, Vashakidze RP, Chelidze MG, Gabriadze IY (1985) A restriction endonuclease SuaI from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. FEBS Lett 192:57–60PubMedCrossRefGoogle Scholar
  73. Prangishvili D, Stedman K, Zillig W (2001) Viruses of the extremely thermophilic archaeon Sulfolobus. Trends Microbiol 9:39–43PubMedCrossRefGoogle Scholar
  74. Purschke WG, Schäfer G (2001) Independent replication of the plasmids pRN1 and pRN2 in the archaeon Sulfolobus islandicus. FEMS Microbiol Lett 200:97–102PubMedCrossRefGoogle Scholar
  75. Redder P, Garrett RA (2006) Mutations and rearrangements in the genome of Sulfolobus solfataricus P2. J Bacteriol 188:4198–4206PubMedCrossRefGoogle Scholar
  76. Reilly MS, Grogan DW (2001) Characterizatin of intragenic recombination in a hyperthermophilic archaeon via conjugational DNA exchange. J Bacteriol 183:2943–2946PubMedCrossRefGoogle Scholar
  77. Reilly MS, Grogan DW (2002) Biological effects of DNA damage in the hyperthermophilic archaeon Sulfolobus acidocaldarius. FEMS Microbiol Lett 208:29–34PubMedCrossRefGoogle Scholar
  78. Reiter WD, Palm P, Zillig W (1988) Analysis of transcription in the archaebacterium Sulfolobus indicates that archaebacterial promoters are homologous to eukaryotic pol II promoters. Nucleic Acids Res 16:1–19PubMedCrossRefGoogle Scholar
  79. Ruggero D, Londei P (1996) Differential antibiotic sensitivity determined by the large ribosomal subunit in thermophilic Archaea. J Bacteriol 178:3396–3398PubMedGoogle Scholar
  80. Sanz JL, Huber G, Huber H, Amils R (1994) Using protein synthesis inhibitiors to establish the phylogenetic relationships of the Sulfolobales order. J Mol Evol 39:528–532PubMedCrossRefGoogle Scholar
  81. Sartorius-Neef S, Pfeifer F (2004) In vivo studies on putative Shine-Dalgarno sequences of the halophilic archaeon Halobacterium salinarum. Mol Microbiol 51:579–588PubMedCrossRefGoogle Scholar
  82. Schelert J, Dixit V, Hoang V, Simbahan J, Drozda M, Blum P (2004) Occurence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption. J Bacteriol 186:427–437PubMedCrossRefGoogle Scholar
  83. Schleper C (1993) Genetische Elemente und Transformation des extrem thermophilen Archaeons Sulfolobus solfataricus, PhD thesis, Fakultät für Biologie, Ludwig-Maximilians-Universität, München, GermanyGoogle Scholar
  84. Schleper C, Kubo K, Zillig W (1992) The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: demonstration of infectivity and of transfection with the viral DNA. Proc Natl Acad Sci USA 89:7645–7649PubMedCrossRefGoogle Scholar
  85. Schleper C, Roder R, Singer T, Zillig W (1994) An insertion element of the extremely thermophilic archaeon Sulfolobus solfataricus transposes into the endogenous beta-galactosidase gene. Mol Gen Genet 243:91–96PubMedCrossRefGoogle Scholar
  86. She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PM, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der Oost J (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840PubMedCrossRefGoogle Scholar
  87. Snijders AP, Walther J, Peter S, Kinnman I, de Vos MG, van de Werken HJ, Brouns SJ, van der Oost J, Wright PC (2006) Reconstruction of central carbon metabolism in Sulfolobus solfataricus using a two-dimensional gel electrophoresis map, stable isotope labelling and DNA microarray analysis. Proteomics 6(5):1518–1529PubMedCrossRefGoogle Scholar
  88. Söllner S, Berkner S, Lipps G (2006) Characterisation of the novel restriction endonuclease SuiI from Sulfolobus islandicus. Extremophiles 10:629–634PubMedCrossRefGoogle Scholar
  89. Stedman KM, Schleper C, Rumpf E, Zillig W (1999) Genetic requirements for the function of the archeal virus SSV1 in Sulfolobus solfataricus: construction and testing of a viral shuttle vector. Genetics 152:1397–1405PubMedGoogle Scholar
  90. Suzuki T et al. (2002) Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu Hot Springs, Japan. Extremophiles 6:39–44PubMedCrossRefGoogle Scholar
  91. Szabo Z, Sani M, Groeneveld M, Zolghadr B, Schelert J, Albers SV, Blum P, Boekema EJ, Driessen AJM (2007) Flagellar motility and structure in the hyperthermoacidophilic Archaeon Sulfolobus solfataricus. J Bacteriol 189:4305–4309PubMedCrossRefGoogle Scholar
  92. Worthington P, Hoang V, Perez-Pomares F, Blum P (2003) Targeted disruption of the alpha-amylase gene in the hyperthermophilic Archaeon Sulfolobus solfataricus. J Bacteriol 185:482–488PubMedCrossRefGoogle Scholar
  93. Yeats S, McWilliam P, Zillig W (1982) A plasmid in the archaebacterium Sulfolobus acidocaldarius. EMBO J 1:1035–1038PubMedGoogle Scholar
  94. Zillig W, Kletzin A, Schleper C, Holz I, Janekovic D, Hain J, Lanzendörfer M, Kristiansson JK (1994) Screening for Sulfolobales, their plasmids, and their viruses in Islandic solfataras. Syst Appl Microbiol 16:606–628Google Scholar
  95. Zillig W, Prangishvili D, Schleper C, Elferink MGL, Holz I, Albers S, Janekovic D, Götz D (1996) Viruses, plasmids and other genetic elements of thermophilic and hyperthermophilic Archaea. FEMS Microbiol Rev 18:225–236PubMedCrossRefGoogle Scholar
  96. Zillig W, Arnold HP, Holz I, Prangishvili D, Schweier A, Stedman K, She Q, Phan H, Garrett RA, Kristiansson JK (1998) Genetic elements in the extremely thermophilic archaeon Sulfolobus. Extremophiles 2:131–140PubMedCrossRefGoogle Scholar
  97. Zolghadr B, Weber S, Szabó Z, Driessen AJ, Albers SV (2007) Identification of a system required for the functional surface localization of sugar binding proteins with class III signal peptides in Sulfolobus solfataricus. Mol Microbiol 64(3):795–806PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of BayreuthBayreuthGermany
  2. 2.University of Applied Sciences NordwestschweizMuttenzSwitzerland

Personalised recommendations