Archives of Microbiology

, Volume 190, Issue 4, pp 427–437

The Lactococcus lactis FabF fatty acid synthetic enzyme can functionally replace both the FabB and FabF proteins of Escherichia coli and the FabH protein of Lactococcus lactis

Original Paper

DOI: 10.1007/s00203-008-0390-6

Cite this article as:
Morgan-Kiss, R.M. & Cronan, J.E. Arch Microbiol (2008) 190: 427. doi:10.1007/s00203-008-0390-6

Abstract

The genome of Lactococcus lactis encodes a single long chain 3-ketoacyl-acyl carrier protein synthase. This is in contrast to its close relative, Enterococcus faecalis, and to Escherichia coli, both of which have two such enzymes. In E. faecalis and E. coli, one of the two long chain synthases (FabO and FabB, respectively) has a role in unsaturated fatty acid synthesis that cannot be satisfied by FabF, the other long chain synthase. Since L. lactis has only a single long chain 3-ketoacyl-acyl carrier protein synthase (annotated as FabF), it seemed likely that this enzyme must function both in unsaturated fatty acid synthesis and in elongation of short chain acyl carrier protein substrates to the C18 fatty acids found in the cellular phospholipids. We report that this is the case. Expression of L. lactis FabF can functionally replace both FabB and FabF in E. coli, although it does not restore thermal regulation of phospholipid fatty acid composition to E. colifabF mutant strains. The lack of thermal regulation was predictable because wild-type L. lactis was found not to show any significant change in fatty acid composition with growth temperature. We also report that overproduction of L. lactis FabF allows growth of an L. lactis mutant strain that lacks the FabH short chain 3-ketoacyl-acyl carrier protein synthase. The strain tested was a derivative (called the ∆fabH bypass strain) of the original fabH deletion strain that had acquired the ability to grow when supplemented with octanoate. Upon introduction of a FabF overexpression plasmid into this strain, growth proceeded normally in the absence of fatty acid supplementation. Moreover, this strain had a normal rate of fatty acid synthesis and a normal fatty acid composition. Both the ∆fabH bypass strain that overproduced FabF and the wild type strain incorporated much less exogenous octanoate into long chain phospholipid fatty acids than did the ∆fabH bypass strain. Incorporation of octanoate and decanoate labeled with deuterium showed that these acids were incorporated intact as the distal methyl and methylene groups of the long chain fatty acids.

Keywords

Lactococcus lactis Fatty acid synthesis 3-Ketoacyl-ACP synthases 

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Microbiology, B103 Chemical and Life Sciences LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of BiochemistryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Department of MicrobiologyMiami UniversityOxfordUSA

Personalised recommendations