Archives of Microbiology

, Volume 190, Issue 3, pp 257–269 | Cite as

Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea

  • Ellen Oelgeschläger
  • Michael RotherEmail author


Despite its toxicity for the majority of living matter on our planet, numerous microorganisms, both aerobic and anaerobic, can use carbon monoxide (CO) as a source of carbon and/or energy for growth. The capacity to employ carboxidotrophic energy metabolism anaerobically is found in phylogenetically diverse members of the Bacteria and the Archaea. The oxidation of CO is coupled to numerous respiratory processes, such as desulfurication, hydrogenogenesis, acetogenesis, and methanogenesis. Although as diverse as the organisms capable of it, any CO-dependent energy metabolism known depends on the presence of carbon monoxide dehydrogenase. This review summarizes recent insights into the CO-dependent physiology of anaerobic microorganisms with a focus on methanogenic archaea. Carboxidotrophic growth of Methanosarcina acetivorans, thought to strictly rely on the process of methanogenesis, also involves formation of methylated thiols, formate, and even acetogenesis, and, thus, exemplifies how the beneficial redox properties of CO can be exploited in unexpected ways by anaerobic microorganisms.


Carboxidotrophic Carbon monoxide dehydrogenase Acetyl-CoA synthase Methanosarcinaacetivorans 



We are indebted to V. Müller, University of Frankfurt, for his generous support. We also thank W.W. Metcalf, University of Illinois, for stimulating discussions and the anonymous reviewers for their constructive suggestions. The work in the authors’ laboratory was supported by a grant from the Deutsche Forschungsgemeinschaft (RO 2445/2-1) within the SPP1112.


  1. Abbott IA, Hollenberg GJ (1976) Marine algae of California. Stanford University Press, StanfordGoogle Scholar
  2. Achenbach-Richter L, Stetter KO, Woese CR (1987) A possible biochemical missing link among archaebacteria. Nature 327:348–349PubMedCrossRefGoogle Scholar
  3. Aono S (2003) Biochemical and biophysical properties of the CO-sensing transcriptional activator CooA. Acc Chem Res 36:825–831PubMedCrossRefGoogle Scholar
  4. Bartholomew GW, Alexander M (1979) Microbial metabolism of carbon monoxide in culture and in soil. Appl Environ Microbiol 37:932–937PubMedGoogle Scholar
  5. Bäumer S, Ide T, Jacobi C, Johann A, Gottschalk G, Deppenmeier U (2000) The F420H2 Dehydrogenase from Methanosarcina mazei is a redox-driven proton pump closely related to NADH dehydrogenases. J Biol Chem 275:17968–17973PubMedCrossRefGoogle Scholar
  6. Bertoldo C, Antranikian G (2006) The order thermococcales. In: Dworkin M, Falkow S, Rosenberg H, Schleifer K-H, Stackebrandt E (eds) The prokaryotes—a handbook on the biology of bacteria. Springer, New York, pp 69–81Google Scholar
  7. Boehning D, Snyder SH (2003) Novel neural modulators. Annu Rev Neurosci 26:105–131PubMedCrossRefGoogle Scholar
  8. Bonam D, Ludden PW (1987) Purification and characterization of carbon monoxide dehydrogenase, a nickel, zinc, iron-sulfur protein, from Rhodospirillum rubrum. J Biol Chem 262:2980–2987PubMedGoogle Scholar
  9. Bonam D, Lehman L, Roberts GP, Ludden PW (1989) Regulation of carbon monoxide dehydrogenase and hydrogenase in Rhodospirillum rubrum: effects of CO and oxygen on synthesis and activity. J Bacteriol 171:3102–3107PubMedGoogle Scholar
  10. Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640PubMedGoogle Scholar
  11. Dabrock B, Bahl H, Gottschalk G (1992) Parameters affecting solvent production by Clostridium pasteurianum. Appl Environ Microbiol 58:1233–1239PubMedGoogle Scholar
  12. Daniel JS, Solomon S (1998) On the climate forcing of carbon monoxide. J Geophys Res 103:13249–13260CrossRefGoogle Scholar
  13. Daniel SL, Hsu T, Dean SI, Drake HL (1990) Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol 172:4464–4471PubMedGoogle Scholar
  14. Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126PubMedGoogle Scholar
  15. Dashekvicz MP, Uffen RL (1979) Identification of a carbon monoxide-metabolizing bacterium as a strain of Rhodopseudomonas gelatinosa (Molisch) van Niel. Int J Syst Bacteriol 29:145–148CrossRefGoogle Scholar
  16. Deppenmeier U (2002) Redox-driven proton translocation in methanogenic archaea. Cell Mol Life Sci 59:1513–1533PubMedCrossRefGoogle Scholar
  17. Deppenmeier U, Müller V (2007) Life close to the thermodynamic limit: how methanogenic archaea conserve energy. In: Richter D, Tiedge H (eds), Results Probl Cell Diff. Springer, Heidelberg. doi: 10.1007/400_2006_026
  18. Deppenmeier U, Blaut M, Lentes S, Herzberg C, Gottschalk G (1995) Analysis of the vhoGAC and vhtGAC operons from Methanosarcina mazei strain Gö1, both encoding a membrane-bound hydrogenase and a cytochrome b. Eur J Biochem 227:261–269PubMedCrossRefGoogle Scholar
  19. Deppenmeier U, Lienard T, Gottschalk G (1999) Novel reactions involved in energy conservation by methanogenic archaea. FEBS Lett 457:291–297PubMedCrossRefGoogle Scholar
  20. Diekert GB, Thauer RK (1978) Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J Bacteriol 136:597–606PubMedGoogle Scholar
  21. Dobbek H, Gremer L, Kiefersauer R, Huber R, Meyer O (2002) Catalysis at a dinuclear [CuSMo(==O) OH] cluster in a CO dehydrogenase resolved at 1.1-Å resolution. Proc Natl Acad Sci USA 99:15971–15976PubMedCrossRefGoogle Scholar
  22. Drake HL, Küsel K, Matthies C (2002) Ecological consequences of the phylogenetic and physiological diversities of acetogens. Antonie Van Leeuwenhoek 81:203–213PubMedCrossRefGoogle Scholar
  23. Drennan CL, Heo J, Sintchak MD, Schreiter E, Ludden PW (2001) Life on carbon monoxide: X-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase. Proc Natl Acad Sci USA 98:11973–11978PubMedCrossRefGoogle Scholar
  24. Ensign SA, Ludden PW (1991) Characterization of the CO oxidation/H2 evolution system of Rhodospirillum rubrum. Role of a 22-kDa iron-sulfur protein in mediating electron transfer between carbon monoxide dehydrogenase and hydrogenase. J Biol Chem 266:18395–18403PubMedGoogle Scholar
  25. Ensign SA, Hyman MR, Ludden PW (1989) Nickel-specific, slow-binding inhibition of carbon monoxide dehydrogenase from Rhodospirillum rubrum by cyanide. Biochemistry 28:4973–4979PubMedCrossRefGoogle Scholar
  26. Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK (1997) Crystal structure of methyl coenzyme M reductase—the key enzyme of biological methane formation. Science 278:1457–1462PubMedCrossRefGoogle Scholar
  27. Ferry JG (1993) Fermentation of acetate. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York, pp 304–334Google Scholar
  28. Ferry JG (1995) CO dehydrogenase. Annu Rev Microbiol 49:305–333PubMedCrossRefGoogle Scholar
  29. Ferry JG (1997) Enzymology of the fermentation of acetate to methane by Methanosarcina thermophila. Biofactors 6:25–35PubMedGoogle Scholar
  30. Fischer R, Thauer RK (1990) Ferredoxin-dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS). FEBS Lett 269:368–372PubMedCrossRefGoogle Scholar
  31. Fischer F, Zillig W, Stetter KO, Schreiber G (1983) Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 301:511–513PubMedCrossRefGoogle Scholar
  32. Fox JD, He Y, Shelver D, Roberts GP, Ludden PW (1996a) Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum. J Bacteriol 178:6200–6208PubMedGoogle Scholar
  33. Fox JD, Kerby RL, Roberts GP, Ludden PW (1996b) Characterization of the CO-induced, CO-tolerant hydrogenase from Rhodospirillum rubrum and the gene encoding the large subunit of the enzyme. J Bacteriol 178:1515–1524PubMedGoogle Scholar
  34. Frunzke K, Meyer O (1990) Nitrate respiration, denitrification, and utilization of nitrogen sources by aerobic carbon monoxide-oxidizing bacteria. Arch Microbiol 154:168–174CrossRefGoogle Scholar
  35. Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D, Brown A, Allen N, Naylor J, Stange-Thomann N, DeArellano K, Johnson R, Linton L, McEwan P, McKernan K, Talamas J, Tirrell A, Ye W, Zimmer A, Barber RD, Cann I, Graham DE, Grahame DA, Guss AM, Hedderich R, Ingram-Smith C, Kuettner HC, Krzycki JA, Leigh JA, Li W, Liu J, Mukhopadhyay B, Reeve JN, Smith K, Springer TA, Umayam LA, White O, White RH, Conway de Macario E, Ferry JG, Jarrell KF, Jing H, Macario AJ, Paulsen I, Pritchett M, Sowers KR, Swanson RV, Zinder SH, Lander E, Metcalf WW, Birren B (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542PubMedCrossRefGoogle Scholar
  36. Gorris LG, Voet AC, van der Drift C (1991) Structural characteristics of methanogenic cofactors in the non-methanogenic archaebacterium Archaeoglobus fulgidus. Biofactors 3:29–35PubMedGoogle Scholar
  37. Grahame DA (1991) Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzyme complex. J Biol Chem 266:22227–22233PubMedGoogle Scholar
  38. Grahame DA (2003) Acetate C-C bond formation and decomposition in the anaerobic world: the structure of a central enzyme and its key active-site metal cluster. Trends Biochem Sci 28:221–224PubMedCrossRefGoogle Scholar
  39. Grahame DA, DeMoll E (1995) Substrate and accessory protein requirements and thermodynamics of acetyl-CoA synthesis and cleavage in Methanosarcina barkeri. Biochemistry 34:4617–4624PubMedCrossRefGoogle Scholar
  40. Grahame DA, DeMoll E (1996) Partial reactions catalyzed by protein components of the acetyl-CoA decarbonylase synthase enzyme complex from Methanosarcina barkeri. J Biol Chem 271:8352–8358PubMedCrossRefGoogle Scholar
  41. Graven WM, Long FJ (1954) Kinetics and mechanisms of the two opposing reactions of the equilibrium CO + H2O = CO2 + H2. J Am Chem Soc 76:2602–2607CrossRefGoogle Scholar
  42. Haab P (1990) The effect of carbon monoxide on respiration. Experientia 46:1202–1206PubMedCrossRefGoogle Scholar
  43. Hedderich R, Forzi L (2005) Energy-converting [NiFe] hydrogenases: more than just H2 activation. J Mol Microbiol Biotechnol 10:92–104PubMedCrossRefGoogle Scholar
  44. Hedderich R, Hamann N, Bennati M (2005) Heterodisulfide reductase from methanogenic archaea: a new catalytic role for an iron-sulfur cluster. Biol Chem 386:961–970PubMedCrossRefGoogle Scholar
  45. Henstra AM, Stams AJ (2004) Novel physiological features of Carboxydothermus hydrogenoformans and Thermoterrabacterium ferrireducens. Appl Environ Microbiol 70:7236–7240PubMedCrossRefGoogle Scholar
  46. Henstra AM, Dijkema C, Stams AJ (2007a) Archaeoglobus fulgidus couples CO oxidation to sulfate reduction and acetogenesis with transient formate accumulation. Environ Microbiol 9:1836–1841PubMedCrossRefGoogle Scholar
  47. Henstra AM, Sipma J, Rinzema A, Stams AJ (2007b) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18:200–206PubMedCrossRefGoogle Scholar
  48. Hu S-I, Drake HL, Wood HG (1982) The synthesis of acetyl coenzyme A from carbon monoxide, methyltetrahydrofolate, and coenzyme A by enzymes from Clostridium thermoaceticum. J Bacteriol 149:440–448PubMedGoogle Scholar
  49. Hugendieck I, Meyer O (1992) The structural genes encoding CO dehydrogenase subunits (cox L, M and S) in Pseudomonas carboxydovorans OM5 reside on plasmid pHCG3 and are, with the exception of Streptomyces thermoautotrophicus, conserved in carboxydotrophic bacteria. Arch Microbiol 157:301–304PubMedCrossRefGoogle Scholar
  50. Imkamp F, Biegel E, Jayamani E, Buckel W, Müller V (2007) Dissection of the caffeate respiratory chain in the acetogen Acetobacterium woodii: identification of an Rnf-type NADH dehydrogenase as a potential coupling site. J Bacteriol 189:8145–8153PubMedCrossRefGoogle Scholar
  51. Jacobitz S, Meyer O (1989) Removal of CO dehydrogenase from Pseudomonas carboxydovorans cytoplasmic membranes, rebinding of CO dehydrogenase to depleted membranes, and restoration of respiratory activities. J Bacteriol 171:6294–6299PubMedGoogle Scholar
  52. Jensen A, Finster K (2005) Isolation and characterization of Sulfurospirillum carboxydovorans sp. nov., a new microaerophilic carbon monoxide oxidizing epsilon proteobacterium. Antonie Van Leeuwenhoek 87:339–353PubMedCrossRefGoogle Scholar
  53. Keltjens JT, Vogels GD (1993) Conversion of methanol and methylamines to methane and carbon dioxide. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York, pp 253–303Google Scholar
  54. Kerby R, Zeikus JG (1983) Growth of Clostridium thermoaceticum on H2/CO2 or CO as energy source. Curr Microbiol 8:27–30CrossRefGoogle Scholar
  55. Kerby RL, Hong SS, Ensign SA, Coppoc LJ, Ludden PW, Roberts GP (1992) Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system. J Bacteriol 174:5284–5294PubMedGoogle Scholar
  56. Kerby RL, Ludden PW, Roberts GP (1995) Carbon monoxide-dependent growth of Rhodospirillum rubrum. J Bacteriol 177:2241–2244PubMedGoogle Scholar
  57. Kim BH, Bellows P, Datta R, Zeikus JG (1984) Control of carbon and electron flow in Clostridium acetobutylicum fermentations: utilization of carbon monoxide to inhibit hydrogen production and to enhance butanol yields. Appl Environ Microbiol 48:764–770PubMedGoogle Scholar
  58. King GM, Weber CF (2007) Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nat Rev Microbiol 5:107–118PubMedCrossRefGoogle Scholar
  59. Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, Richardson DL, Kerlavage AR, Graham DE, Kyrpides NC, Fleischmann RD, Quackenbush J, Lee NH, Sutton GG, Gill S, Kirkness EF, Dougherty BA, McKenney K, Adams MD, Loftus B, Peterson S, Reich CI, McNeil LK, Badger JH, Glodek A, Zhou L, Overbeek R, Gocayne JD, Weidman JF, McDonald L, Utterback T, Cotton MD, Spriggs T, Artiach P, Kaine BP, Sykes SM, Sadow PW, D’Andrea KP, Bowman C, Fujii C, Garland SA, Mason TM, Olsen GJ, Fraser CM, Smith HO, Woese CR, Venter JC (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–370PubMedCrossRefGoogle Scholar
  60. Kluyver AJ, Schnellen C (1947) On the fermentation of carbon monoxide by pure cultures of methane bacteria. Arch Biochem 12:57–70Google Scholar
  61. Kocsis E, Kessel M, DeMoll E, Grahame DA (1999) Structure of the Ni/Fe-S protein subcomponent of the acetyl-CoA decarbonylase/synthase complex from Methanosarcina thermophila at 26-Ǻ resolution. J Struct Biol 128:165–174PubMedCrossRefGoogle Scholar
  62. Kraut M, Hugendieck I, Herwig S, Meyer O (1989) Homology and distribution of CO dehydrogenase structural genes in carboxydotrophic bacteria. Arch Microbiol 152:335–341PubMedCrossRefGoogle Scholar
  63. Krzycki JA, Zeikus JG (1984) Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri. J Bacteriol 158:231–237PubMedGoogle Scholar
  64. Krzycki JA, Wolkin RH, Zeikus JG (1982) Comparison of unitrophic and mixotrophic substrate metabolism by acetate-adapted strain of Methanosarcina barkeri. J Bacteriol 149:247–254PubMedGoogle Scholar
  65. Ladapo J, Whitman WB (1990) Method for isolation of auxotrophs in the methanogenic archaebacteria: Role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis. Proc Natl Acad Sci USA 87:5598–5602PubMedCrossRefGoogle Scholar
  66. Lanzilotta WN, Schuller DJ, Thorsteinsson MV, Kerby RL, Roberts GP, Poulos TL (2000) Structure of the CO sensing transcription activator CooA. Nat Struct Biol 7:876–880PubMedCrossRefGoogle Scholar
  67. Lessner DJ, Li L, Li Q, Rejtar T, Andreev VP, Reichlen M, Hill K, Moran JJ, Karger BL, Ferry JG (2006) An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics. Proc Natl Acad Sci USA 103:17921–17926PubMedCrossRefGoogle Scholar
  68. Li Q, Li L, Rejtar T, Lessner DJ, Karger BL, Ferry JG (2006) Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans. J Bacteriol 188:702–710PubMedCrossRefGoogle Scholar
  69. Lindahl PA (2002) The Ni-containing carbon monoxide dehydrogenase family: light at the end of the tunnel? Biochemistry 41:2097–2105PubMedCrossRefGoogle Scholar
  70. Lindahl PA, Chang B (2001) The evolution of acetyl-CoA synthase. Orig Life Evol Biosph 31:403–434PubMedCrossRefGoogle Scholar
  71. Liou JS, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091PubMedCrossRefGoogle Scholar
  72. Ljungdahl LG (1994) The acetyl-CoA pathway and the chemiosmotic generation of ATP during acetogenesis. In: Ferry JG (ed) Acetogenesis. Chapman & Hall, New York, pp 63–87Google Scholar
  73. Lovley DR, Ferry JG (1985) Production and consumption of hydrogen during growth of Methanosarcina spp on acetate. Appl Environ Microbiol 49:247–249PubMedGoogle Scholar
  74. Lupton FS, Conrad R, Zeikus JG (1984) CO metabolism of Desulfovibrio vulgaris strain Madison: physiological function in the absence or presence of exogeneous substrates. FEMS Microbiol Lett 23:263–268CrossRefGoogle Scholar
  75. Lynd L, Kerby R, Zeikus JG (1982) Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum. J Bacteriol 149:255–263PubMedGoogle Scholar
  76. Maeder DL, Anderson I, Brettin TS, Bruce DC, Gilna P, Han CS, Lapidus A, Metcalf WW, Saunders E, Tapia R, Sowers KR (2006) The Methanosarcina barkeri genome: comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. J Bacteriol 188:7922–7931PubMedCrossRefGoogle Scholar
  77. Maness PC, Huang J, Smolinski S, Tek V, Vanzin G (2005) Energy generation from the CO oxidation-hydrogen production pathway in Rubrivivax gelatinosus. Appl Environ Microbiol 71:2870–2874PubMedCrossRefGoogle Scholar
  78. Martin W, Russell MJ (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc Lond B Biol Sci 362:1887–1925PubMedCrossRefGoogle Scholar
  79. Maynard EL, Lindahl PA (1999) Evidence of a molecular tunnel connecting the active sites for CO2 reduction and acetyl-CoA synthesis in acetyl-CoA synthase from Clostridium thermoaceticum. J Am Chem Soc 121:9221–9222CrossRefGoogle Scholar
  80. Menon S, Ragsdale SW (1996) Evidence that carbon monoxide is an obligatory intermediate in anaerobic acetyl-CoA synthesis. Biochemistry 35:12119–12125PubMedCrossRefGoogle Scholar
  81. Meuer J, Kuettner HC, Zhang JK, Hedderich R, Metcalf WW (2002) Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc Natl Acad Sci USA 99:5632–5637PubMedCrossRefGoogle Scholar
  82. Meyer O, Schlegel HG (1983) Biology of aerobic carbon monoxide-oxidizing bacteria. Annu Rev Microbiol 37:277–310PubMedCrossRefGoogle Scholar
  83. Möller-Zinkhan D, Börner G, Thauer RK (1989) Function of methanofuran, tetrahydromethanopterin, and coenzyme F420 in Archaeoglobus fulgidus. Arch Microbiol 152:362–368CrossRefGoogle Scholar
  84. Moran JJ, House CH, Vrentas JM, Freeman KH (2007) Methyl sulfide production by a novel carbon monoxide metabolism in Methanosarcina acetivorans. Appl Environ Microbiol. Published online. doi: 10.1128/AEM.01750–01707
  85. Morita T, Perrella MA, Lee ME, Kourembanas S (1995) Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proc Natl Acad Sci USA 92:1475–1479PubMedCrossRefGoogle Scholar
  86. Mörsdorf G, Frunzke K, Gadkari D, Meyer O (1992) Microbial growth on carbon monoxide. Biodegradation 3:61–82CrossRefGoogle Scholar
  87. Müller V (2003) Energy conservation in acetogenic bacteria. Appl Environ Microbiol 69:6345–6353PubMedCrossRefGoogle Scholar
  88. Müller V, Blaut M, Gottschalk G (1993) Bioenergetics of methanogenesis. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York, pp 360–406Google Scholar
  89. Nelson MJ, Ferry JG (1984) Carbon monoxide-dependent methyl coenzyme M methylreductase in acetotrophic Methosarcina spp. J Bacteriol 160:526–532PubMedGoogle Scholar
  90. O’Brien JM, Wolkin RH, Moench TT, Morgan JB, Zeikus JG (1984) Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J Bacteriol 158:373–375PubMedGoogle Scholar
  91. Parshina SN, Kijlstra S, Henstra AM, Sipma J, Plugge CM, Stams AJ (2005a) Carbon monoxide conversion by thermophilic sulfate-reducing bacteria in pure culture and in co-culture with Carboxydothermus hydrogenoformans. Appl Microbiol Biotechnol 68:390–396PubMedCrossRefGoogle Scholar
  92. Parshina SN, Sipma J, Nakashimada Y, Henstra AM, Smidt H, Lysenko AM, Lens PN, Lettinga G, Stams AJ (2005b) Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100% CO. Int J Syst Evol Microbiol 55:2159–2165PubMedCrossRefGoogle Scholar
  93. Pomper BK, Saurel O, Milon A, Vorholt JA (2002) Generation of formate by the formyltransferase/hydrolase complex (Fhc) from Methylobacterium extorquens AM1. FEBS Lett 523:133–137PubMedCrossRefGoogle Scholar
  94. Rabus R, Hansen TA, Widdel F (2006) Dissimilatory sulfate- and sulfur-reducing prokaryotes. In: Dworkin M, Falkow S, Rosenberg H, Schleifer K-H, Stackebrandt E (eds) The prokaryotes—a handbook on the biology of bacteria. Springer, New York, pp 659–768Google Scholar
  95. Ragsdale SW (2004) Life with carbon monoxide. Crit Rev Biochem Mol Biol 39:165–195PubMedCrossRefGoogle Scholar
  96. Ragsdale SW, Kumar M (1996) Nickel-containing carbon monoxide dehydrogenase/acetyl-CoA synthase. Chem Rev 96:2515–2539PubMedCrossRefGoogle Scholar
  97. Ragsdale SW, Ljungdahl LG, DerVartanian DV (1983) Isolation of carbon monoxide dehydrogenase from Acetobacterium woodii and comparison of its properties with those of the Clostridium thermoaceticum enzyme. J Bacteriol 155:1224–1237PubMedGoogle Scholar
  98. Roberts DL, James-Hagstrom JE, Garvin DK, Gorst CM, Runquist JA, Baur JR, Haase FC, Ragsdale SW (1989) Cloning and expression of the gene cluster encoding key proteins involved in acetyl-CoA synthesis in Clostridium thermoaceticum: CO dehydrogenase, the corrinoid/Fe-S protein, and methyltransferase. Proc Natl Acad Sci USA 86:32–36PubMedCrossRefGoogle Scholar
  99. Roberts GP, Thorsteinsson MV, Kerby RL, Lanzilotta WN, Poulos T (2001) CooA: a heme-containing regulatory protein that serves as a specific sensor of both carbon monoxide and redox state. Prog Nucleic Acid Res Mol Biol 67:35–63PubMedCrossRefGoogle Scholar
  100. Roberts GP, Youn H, Kerby RL (2004) CO-sensing mechanisms. Microbiol Mol Biol Rev 68:453–473PubMedCrossRefGoogle Scholar
  101. Rother M, Metcalf WW (2004) Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc Natl Acad Sci USA 101:16929–16934PubMedCrossRefGoogle Scholar
  102. Rother M, Oelgeschläger E, Metcalf WW (2007) Genetic and proteomic analyses of CO utilization by Methanosarcina acetivorans. Arch Microbiol 188:463–472PubMedCrossRefGoogle Scholar
  103. Schäfer G, Engelhard M, Müller V (1999) Bioenergetics of the archaea. Microbiol Mol Biol Rev 63:570–620PubMedGoogle Scholar
  104. Schauder R, Preuß A, Jetten MS, Fuchs G (1988) Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. Arch Microbiol 151:84–89CrossRefGoogle Scholar
  105. Schlegel HG (1966) Physiology and biochemistry of knallgasbacteria. Adv Comp Physiol Biochem 2:185–236PubMedGoogle Scholar
  106. Schmehl M, Jahn A, Meyer zu Vilsendorf A, Hennecke S, Masepohl B, Schuppler M, Marxer M, Oelze J, Klipp W (1993) Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: a putative membrane complex involved in electron transport to nitrogenase. Mol Gen Genet 241:602–615PubMedCrossRefGoogle Scholar
  107. Seravalli J, Ragsdale SW (2000) Channeling of carbon monoxide during anaerobic carbon dioxide fixation. Biochemistry 39:1274–1277PubMedCrossRefGoogle Scholar
  108. Seravalli J, Kumar M, Lu WP, Ragsdale SW (1995) Mechanism of CO oxidation by carbon monoxide dehydrogenase from Clostridium thermoaceticum and its inhibition by anions. Biochemistry 34:7879–7888PubMedCrossRefGoogle Scholar
  109. Sharak Genthner BR, Bryant MP (1987) Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii. Appl Environ Microbiol 53:471–476PubMedGoogle Scholar
  110. Shelver D, Kerby RL, He Y, Roberts GP (1995) Carbon monoxide-induced activation of gene expression in Rhodospirillum rubrum requires the product of cooA, a member of the cyclic AMP receptor protein family of transcriptional regulators. J Bacteriol 177:2157–2163PubMedGoogle Scholar
  111. Siebers B, Schönheit P (2005) Unusual pathways and enzymes of central carbohydrate metabolism in archaea. Curr Opin Microbiol 8:695–705PubMedGoogle Scholar
  112. Singer SW, Hirst MB, Ludden PW (2006) CO-dependent H2 evolution by Rhodospirillum rubrum: role of CODH:CooF complex. Biochim Biophys Acta 1757:1582–1591PubMedCrossRefGoogle Scholar
  113. Sipma J, Henstra AM, Parshina SM, Lens PN, Lettinga G, Stams AJ (2006) Microbial CO conversions with applications in synthesis gas purification and bio-desulfurization. Crit Rev Biotechnol 26:41–65PubMedCrossRefGoogle Scholar
  114. Smith DR, Doucette-Stamm LA, Deloughery C, Lee H, Dubois J, Aldredge T, Bashirzadeh R, Blakely D, Cook R, Gilbert K, Harrison D, Hoang L, Keagle P, Lumm W, Pothier B, Qiu D, Spadafora R, Vicaire R, Wang Y, Wierzbowski J, Gibson R, Jiwani N, Caruso A, Bush D, Safer H, Patwell D, Prabhakar S, McDougall S, Shimer G, Goyal A, Pietrokovski S, Church GM, Daniels CJ, Mao J, Rice P, Nölling J, Reeve JN (1997) Complete genome sequence of Methanobacterium thermoautotrophicum ΔH: functional analysis and comparative genomics. J Bacteriol 179:7135–7755PubMedGoogle Scholar
  115. Soboh B, Linder D, Hedderich R (2002) Purification and catalytic properties of a CO-oxidizing:H2-evolving enzyme complex from Carboxydothermus hydrogenoformans. Eur J Biochem 269:5712–5721PubMedCrossRefGoogle Scholar
  116. Sokolova TG, Jeanthon C, Kostrikina NA, Chernyh NA, Lebedinsky AV, Stackebrandt E, Bonch-Osmolovskaya EA (2004) The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Extremophiles 8:317–323PubMedCrossRefGoogle Scholar
  117. Sowers KR, Baron SF, Ferry JG (1984) Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47:971–978PubMedGoogle Scholar
  118. Spormann AM, Thauer RK (1988) Anaerobic acetate oxidation to CO2 by Desulfotomaculum acetoxidans—demonstration of enzymes required for the operation of an oxidative acetyl-CoA/carbon monoxide dehydrogenase pathway. Arch Microbiol 150:374–380CrossRefGoogle Scholar
  119. Stetter KO (1988) Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst Appl Microbiol 10:172–173Google Scholar
  120. Stojanowic A, Hedderich R (2004) CO2 reduction to the level of formylmethanofuran in Methanosarcina barkeri is non-energy driven when CO is the electron donor. FEMS Microbiol Lett 235:163–167PubMedCrossRefGoogle Scholar
  121. Stupperich E, Hammel KE, Fuchs G, Thauer RK (1983) Carbon monoxide fixation into the carboxyl group of acetyl coenzyme A during autotrophic growth of Methanobacterium. FEBS Lett 152:21–23PubMedCrossRefGoogle Scholar
  122. Svetlichny VA, Sokolova TG, Gerhardt M, Ringpfeil M, Kostrikina NA, Zavarzin GA (1991) Carboxydothermus hydrogenoformans, gen. nov., spec. nov., a carbon monoxide utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir island. Syst Appl Microbiol 14:254–260Google Scholar
  123. Svetlitchnaia T, Svetlitchnyi V, Meyer O, Dobbek H (2006) Structural insights into methyltransfer reactions of a corrinoid iron-sulfur protein involved in acetyl-CoA synthesis. Proc Natl Acad Sci USA 103:14331–14336PubMedCrossRefGoogle Scholar
  124. Svetlitchnyi V, Peschel C, Acker G, Meyer O (2001) Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans. J Bacteriol 183:5134–5144PubMedCrossRefGoogle Scholar
  125. Svetlitchnyi V, Dobbek H, Meyer-Klaucke W, Meins T, Thiele B, Romer P, Huber R, Meyer O (2004) A functional Ni-Ni-[4Fe–4S] cluster in the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans. Proc Natl Acad Sci USA 101:446–451PubMedCrossRefGoogle Scholar
  126. Tallant TC, Paul L, Krzycki JA (2001) The MtsA subunit of the methylthiol:coenzyme M methyltransferase of Methanosarcina barkeri catalyses both half-reactions of corrinoid-dependent dimethylsulfide: coenzyme M methyl transfer. J Biol Chem 276:4485–4493PubMedCrossRefGoogle Scholar
  127. Terlesky KC, Ferry JG (1988) Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila. J Biol Chem 263:4075–4079PubMedGoogle Scholar
  128. Thauer RK (1988) Citric-acid cycle, 50 years on modifications and an alternative pathway in anaerobic bacteria. Eur J Biochem 176:497–508PubMedCrossRefGoogle Scholar
  129. Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406PubMedCrossRefGoogle Scholar
  130. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180PubMedGoogle Scholar
  131. Thauer RK, Hedderich R, Fischer R (1993) Reactions and enzymes involved in methanogenesis from CO2 and H2. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York, pp 209–252Google Scholar
  132. Uffen RL (1976) Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Proc Natl Acad Sci USA 73:3298–3302PubMedCrossRefGoogle Scholar
  133. Uffen RL (1983) Metabolism of carbon monoxide by Rhodopseudomonas gelatinosa: cell growth and properties of the oxidation system. J Bacteriol 155:956–965PubMedGoogle Scholar
  134. Vaupel M, Thauer RK (1998) Two F420-reducing hydrogenases in Methanosarcina barkeri. Arch Microbiol 169:201–205PubMedCrossRefGoogle Scholar
  135. Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH (1993) Carbon monoxide: a putative neural messenger. Science 259:381–384PubMedCrossRefGoogle Scholar
  136. Wood HG (1991) Life with CO or CO2 and H2 as a source of carbon and energy. FASEB J 5:156–163PubMedGoogle Scholar
  137. Wu M, Ren Q, Durkin AS, Daugherty SC, Brinkac LM, Dodson RJ, Madupu R, Sullivan SA, Kolonay JF, Haft DH, Nelson WC, Tallon LJ, Jones KM, Ulrich LE, Gonzalez JM, Zhulin IB, Robb FT, Eisen JA (2005) Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z–2901. PLoS Genet 1:e65. doi  10.1371/journal.pgen.0010065

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institut für Molekulare Biowissenschaften, Abteilung Molekulare Mikrobiologie und BioenergetikJohann Wolfgang Goethe-UniversitätFrankfurt am MainGermany

Personalised recommendations