Advertisement

Archives of Microbiology

, 190:355 | Cite as

A novel trehalose synthesizing pathway in the hyperthermophilic Crenarchaeon Thermoproteus tenax: the unidirectional TreT pathway

  • Theresa Kouril
  • Melanie Zaparty
  • Jeannette Marrero
  • Henner Brinkmann
  • Bettina Siebers
Original Paper

Abstract

In the genome of the hyperthermophilic archaeon Thermoproteus tenax a gene (treS/P) encoding a protein with similarity to annotated trehalose phosphorylase (TreP), trehalose synthase (TreS) and more recently characterized trehalose glycosyltransferring synthase (TreT) was identified. The treS/P gene as well as an upstream located ORF of unknown function (orfY) were cloned, heterologously expressed in E. coli and purified. The enzymatic characterization of the putative TreS/P revealed TreT activity. However, contrary to the previously characterized reversible TreT from Thermococcus litoralis and Pyrococcus horikoshii, the T. tenax enzyme is unidirectional and catalyzes only the formation of trehalose from UDP (ADP)-glucose and glucose. The T. tenax enzyme differs from the reversible TreT of T. litoralis by its preference for UDP-glucose as co-substrate. Phylogenetic and comparative gene context analyses reveal a conserved organization of the unidirectional TreT and OrfY gene cluster that is present in many Archaea and a few Bacteria. In contrast, the reversible TreT pathway seems to be restricted to only a few archaeal (e.g. Thermococcales) and bacterial (Thermotogales) members. Here we present a new pathway exclusively involved in trehalose synthesis––the unidirectional TreT pathway––and discuss its physiological role as well as its phylogenetic distribution.

Keywords

Trehalose metabolism Unidirectional trehalose glycosyltransferring synthase (TreT) Thermoproteus tenax Hyperthermophile Archaea 

Abbreviations

TPS/TPP

Trehalose-6-phosphate synthase/trehalose-6-phosphate phosphatase

TreS

Trehalose synthase

TreT

Trehalose glycosyltransferring synthase

TreP

Trehalose phosphorylase

TreY/TreZ

Maltooligosyl-trehalose synthase/maltooligosyl-trehalose trehalohydrolase

Notes

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through the grant Si642/6-1 (SPP1112). The authors thank W. Boos (University of Konstanz, Germany) for providing the expression vector for the TreT of T. litoralis, S.V. Albers (University of Groningen, The Netherlands) for providing vector pET302 and A. Lupas (MPI for Developmental Biology, Tübingen, Germany) for support in structural analyses of OrfY.

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  3. Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109PubMedCrossRefGoogle Scholar
  4. Brunner NA, Siebers B, Hensel R (2001) Role of two different glyceraldehyde-3-phosphate dehydrogenases in controlling the reversible Embden-Meyerhof-Parnas pathway in Thermoproteus tenax: regulation on protein and transcript level. Extremophiles 5:101–109PubMedCrossRefGoogle Scholar
  5. Carpinelli J, Krämer R, Agosin E (2006) Metabolic engineering of Corynebacterium glutamicum for trehalose overproduction: role of the TreYZ trehalose biosynthetic pathway. Appl Environ Microbiol 72(3):1949–1955PubMedCrossRefGoogle Scholar
  6. Chen YS, Lee GC, Shaw JF (2006) Gene cloning, expression, and biochemical characterization of a recombinant trehalose synthase from Picrophilus torridus in Escherichia coli. J Agric Food Chem 54:7098–7104PubMedCrossRefGoogle Scholar
  7. Di Lernia I, Morana A, Ottombrino A, Fusco S, Rossi M, De Rosa M (1998) Enzymes from Sulfolobus shibatae for the production of trehalose and glucose from starch. Extremophiles 2:409–416PubMedCrossRefGoogle Scholar
  8. DiRuggiero J, Dunn D, Maeder DL, Holley-Shanks R, Chatard J, Horlacher R, Robb FT, Boos W, Weiss RB (2000) Evidence of recent lateral gene transfer among hyperthermophilic Archaea. Mol Microbiol 38:684–693PubMedCrossRefGoogle Scholar
  9. Dörr C (2002) Diploma thesis. University of Essen, GermanyGoogle Scholar
  10. Dörr C, Zaparty M, Tjaden B, Brinkmann H, Siebers B (2003) The hexokinase of the hyperthermophile Thermoproteus tenax. J Biol Chem 278:18744–18753PubMedCrossRefGoogle Scholar
  11. Eis C, Watkins M, Prohaska T, Nidetzky B (2001) Fungal trehalose phosphorylase: kinetic mechanism, pH-dependence of the reaction and some structural properties of the enzyme from Schizophyllum commune. Biochem J 356:757–767 printed in Great BritainPubMedCrossRefGoogle Scholar
  12. Elbein AD, Pan YT, Pastuszak I, Caroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13(4):17–27CrossRefGoogle Scholar
  13. Fischer F, Zillig W, Stetter KO, Schreiber G (1983) Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 301:511–513PubMedCrossRefGoogle Scholar
  14. Greller G, Horlacher R, DiRuggiero J, Boos W (1999) Molecular and biochemical analysis of MalK, the ATP-hydrolyzing subunit of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis. J Biol Chem 279:20259–20264CrossRefGoogle Scholar
  15. Han SE, Kwon HB, Lee SB, Yi BY, Murayama I, Kitamoto Y, Byun MO (2003) Cloning and characterization of a gene encoding trehalose phosphorylase (TP) from Pleurotus sajor-caju. Sci Dir 30:194–202Google Scholar
  16. Horlacher R, Uhland K, Klein W, Ehrmann M, Boos W (1996) Characterization of a cytoplasmic trehalase of Escherichia coli. J Bacteriol 178:6250–6257PubMedGoogle Scholar
  17. Horlacher R, Xavier KB, Santos H, DiRuggiero J, Kossmann M, Boos W (1998) Archaeal binding protein-dependent ABC-transporter: molecular and biochemical analysis maltose/trehalose transport system of the hyperthermophilic archaeon Thermococcus litoralis. J Bacteriol 180:680–689PubMedGoogle Scholar
  18. Itou H, Okada U, Suzuki H, Yao M, Wachi M, Watanabe N, Tanaka I (2005) The CGL2612 protein from corynebacterium glutamicum is a drug resistence-related transcriptional repressor: structural and functional analysis of a newly identified transcription factor from genomic DNA analysis. J Biol Chem 280:38711–38719PubMedCrossRefGoogle Scholar
  19. Jobb G, von Haeseler A, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18PubMedCrossRefGoogle Scholar
  20. Kaasen I, Falkenberg P, Styrvold OB, Strom AR (1992) Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli: evidence that transcription is activated by KatF (AppR). J Bacteriol 174:889–898PubMedGoogle Scholar
  21. Kobayashi KM, Miura Y, Kettoku M, Komeda T, Iwamatsu A (1996) Gene analysis of trehalose-producing enzymes from hyperthermophilic archaea in sulfolobales. Biosci Biotechnol Biochem 60:1720–1723PubMedCrossRefGoogle Scholar
  22. König H, Sorko R, Zillig W, Reiter WD (1982) Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermococcus. Arch Microbiol 132:297–303CrossRefGoogle Scholar
  23. Lee SJ, Engelmann A, Horlacher R, Qu Q, Vierke G, Hebbeln C, Thomm M, Boos W (2003) TrmB, a sugar-specific transcriptional regulator of the trehalose/maltose ABC transporter from the hyperthermophilic archaeon Thermococcus litoralis. J Biol Chem 278:983–990PubMedCrossRefGoogle Scholar
  24. Markowitz VM, Korzeniewski F, Palaniappan K et al (2006) The integrated microbial genomes (IMG) system. Nucleic Acids Res 34:D344–D348PubMedCrossRefGoogle Scholar
  25. Martins LO, Santos H (1995) Accumulation of mannosylglycerate and di-myo-inositol-phosphate by Pyrococcus furiosus in response to salinity and temperature. Appl Environ Microbiol 61(9):3299–3303PubMedGoogle Scholar
  26. Martins LO, Carreto LS, da Costa MS, Santos H (1996) New compatible solutes to di-myo-inositol-phosphate in members of the order Thermotogales. J Bacteriol 178(19):5644–5651PubMedGoogle Scholar
  27. Martins LO, Huber R, Huber H, Stetter KO, Da Costa MS, Santos H (1997) Organic solutes in hyperthermophilic Archaea. Appl Environ Microbiol 63(3):896–902PubMedGoogle Scholar
  28. Maruta K, Mitsuzumi H, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M (1996) Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from the thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim Et Biophys Acta 1291:177–181Google Scholar
  29. Pan YT, Edavana VK, Jourdian WJ, Edmondson R, Caroll JD, Pastuszak I, Elbein AD (2004) Trehalose synthase of Mycobacterium smegmatis. Eur J Biochem 271:4259–4269PubMedCrossRefGoogle Scholar
  30. Philippe H (1993) MUST, a computer package of management utilities for sequences and trees. Nucleic Acids Res 21:5264–5272PubMedCrossRefGoogle Scholar
  31. van der Does C, Manting EH, Kaufmann A, Lutz M, Driessen AJM (1998) Interaction between SecA and SecYEG in Micellar Solution and Formation of the Membrane-Inserted State. Biochemistry 37(1):201–210PubMedCrossRefGoogle Scholar
  32. Qu Q, Lee SJ, Boos W (2004a) Molecular and biochemical characterization of a fructose-6-phosphate-forming and ATP-dependent fructokinase of the hyperthermophilic archaeon Thermococcus litoralis. Extremophiles 8:301–308. doi: 10.1007/s00792-004-0392-5 PubMedCrossRefGoogle Scholar
  33. Qu Q, Lee SJ, Boos W (2004b) TreT, a Novel Glycosyltransferring Synthase of the Hyperthermophilic Archaeon Thermococcus litoralis. J Biol Chem 279:47890–47897PubMedCrossRefGoogle Scholar
  34. Ryu SI, Park CS, Cha J, Woo EJ, Lee SB (2005) A novel trehalose-synthesizing glycosyltransferase from Pyrococcus horikoshii: molecular cloning and characterization. Biochem Biophys Res Commun 329:429–436PubMedCrossRefGoogle Scholar
  35. Saito K, Kase T, Takahashu E, Horinouchi S (1998) Purification and characterization of a trehalose synthase from the basidiomycete Grifola frondosa. Appl Environ Microbiol 64(11):4340–4345PubMedGoogle Scholar
  36. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning––a laboratory manual, 2nd edn. Cold Spring Habour Laboratory Press, New YorkGoogle Scholar
  37. Siebers B, Wendisch VF, Hensel R (1997) Carbohydrate metabolism in Thermoproteus tenax: in vivo utilization of the non-phosphorylative Enter-Doudoroff pathway and characterization of its first enzyme, glucose dehydrogenase. Arch Microbiol 168:120–127PubMedCrossRefGoogle Scholar
  38. Siebers B, Tjaden B, Michalke K, Dörr C, Ahmed H, Zaparty M, Gordon P, Sensen A, Zibat CW, Klenk H-P, Schuster SC, Hensel R (2004) Reconstruction of the central carbohydrate metabolism of Thermoproteus tenax by use of genomic and biochemical data. J Bacteriol 186:2179–2194PubMedCrossRefGoogle Scholar
  39. Snel B, Lehmann G, Bork P, Huynen MA (2000) STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res 28(18):3442–3444PubMedCrossRefGoogle Scholar
  40. Söding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21:951–960. doi: 10.1093/bioinformatics/bti125 PubMedCrossRefGoogle Scholar
  41. Söding J, Biegert A, Lupas A (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Research. 33:W244–W248. doi: 10.1093/nar/gki40 PubMedCrossRefGoogle Scholar
  42. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  43. Tsusaki K, Nishimoto T, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M (1997) Cloning and sequencing of trehalose synthase gene from Thermus aquaticus ATCC33923. Biochim Et Biophys Acta 1334:28–32Google Scholar
  44. Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18(5):691–699PubMedGoogle Scholar
  45. Xavier KB, Martins LO, Peist R, Kossmann M, Boos W, Santos H (1996) High-affinity maltose/trehalose transport system in the hyperthermophilic archaeon Thermococcus litoralis. J Bacteriol 178:4773–4777PubMedGoogle Scholar
  46. Xavier KB, Peist R, Kossmann M, Boos W, Santos H (1999) Maltose metabolism in the hyperthermophilic archaeon Thermococcus litoras. Purification and characterization of key enzymes. J Bacteriol 181:3358–3367PubMedGoogle Scholar
  47. Zaparty M (2003) Diploma thesis. University Essen, GermanyGoogle Scholar
  48. Zaparty M (2007) Ph.D thesis. University of Duisburg-Essen, GermanyGoogle Scholar
  49. Zaparty M, Tjaden B, Hensel R, Siebers B (2008) The central carbohydrate metabolism of the hyperthermophilic crenarchaeote Thermoproteus tenax: pathways and insights into their regulation. Arch Microbiol (submitted)Google Scholar
  50. Zillig W, Stetter KO, Schäfer W, Janekovic D, Wunderl S, Holz I, Palm P (1981) Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfatares. Zentbl Bakteriol Hyg 1 Abt Org C 2:205–227Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Theresa Kouril
    • 1
  • Melanie Zaparty
    • 1
  • Jeannette Marrero
    • 1
  • Henner Brinkmann
    • 2
  • Bettina Siebers
    • 1
  1. 1.Department of Chemistry, Biofilm Centre, Molecular Enzyme Technology and BiochemistryUniversity of Duisburg-EssenDuisburgGermany
  2. 2.Département de Biochimie, Faculté de MédecineUniversité de MontréalMontrealCanada

Personalised recommendations