Archives of Microbiology

, 190:271 | Cite as

The molecular basis of salt adaptation in Methanosarcina mazei Gö1

Mini-Review

Abstract

The study on the molecular basis of salt adaptation and its regulation in archaea is still in its infancy, but genomics and functional genome analyses combined with classical biochemistry shed light on the processes conferring salt adaptation in the methanogenic archaeon Methanosarcina mazei Gö1. In this article, we will review discoveries made within the last years that will culminate in the description of the overall cellular response of M. mazei Gö1 to elevated salinities. This response includes accumulation of solutes and export of Na+ as well as potential uptake/export of K+ but also a restructuring of the cell surface.

Keywords

Archaea Methanogens Osmoregulation Salt adaptation Methanosarcina mazei Gö1 

References

  1. Abken HJ, Tietze M, Brodersen J, Bäumer S, Beifuss U, Deppenmeier U (1998) Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gö1. J Bacteriol 180:2027–2032PubMedGoogle Scholar
  2. Aguena M, Yagil E, Spira B (2002) Transcriptional analysis of the pst operon of Escherichia coli. Mol Genet Genomics 268:518–524PubMedCrossRefGoogle Scholar
  3. Ashby MK (2006) Distribution, structure and diversity of “bacterial” genes encoding two-component proteins in the Euryarchaeota. Archaea 2:11–30PubMedGoogle Scholar
  4. Bakker EP (1992) Cell K+ and K+ transport systems in procaryotes. In: Bakker EP (ed) Alcali cation transport systems in procaryotes. CRC Press, Boca RatonGoogle Scholar
  5. Becher B, Müller V (1994) ΔμNa+ drives the synthesis of ATP via an ΔμNa+-translocating F1F0-ATP synthase in membrane vesicles of the archaeon Methanosarcina mazei Gö1. J Bacteriol 176:2543–2550PubMedGoogle Scholar
  6. Becher B, Müller V, Gottschalk G (1992) N 5-methyl-tetrahydromethanopterin : coenzyme M methyltransferase of Methanosarcina strain Gö1 is a Na+ translocating membrane protein. J Bacteriol 174:7656–7660PubMedGoogle Scholar
  7. Blaut M, Gottschalk G (1984) Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri. Eur J Biochem 141:217–222PubMedCrossRefGoogle Scholar
  8. Blaut M, Müller V, Gottschalk G (1992) Energetics of methanogenesis studies in vesicular systems. J Bioenerg Biomembr 24:529–546PubMedCrossRefGoogle Scholar
  9. Bohnert HJ (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111PubMedCrossRefGoogle Scholar
  10. Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846PubMedGoogle Scholar
  11. Cánovas D, Vargas C, Csonka LN, Ventosa A, Nieto JJ (1996) Osmoprotectants in Halomonas elongata: high-affinity betaine transport system and choline-betaine pathway. J Bacteriol 178:7221–7226PubMedGoogle Scholar
  12. Cánovas D, Vargas C, Csonka LN, Ventosa A, Nieto JJ (1998) Synthesis of glycine betaine from exogenous choline in the moderately halophilic bacterium Halomonas elongata. Appl Environ Microbiol 64:4095–4097PubMedGoogle Scholar
  13. Cánovas D et al (2000) Genes for the synthesis of the osmoprotectant glycine betaine from choline in the moderately halophilic bacterium Halomonas elongata DSM 3043. Microbiology 146:455–463PubMedGoogle Scholar
  14. Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147PubMedGoogle Scholar
  15. Deppenmeier U (2002) The unique biochemistry of methanogenesis. Prog Nucleic Acid Res Mol Biol 71:223–283PubMedCrossRefGoogle Scholar
  16. Deppenmeier U, Blaut M, Mahlmann A, Gottschalk G (1990) Reduced coenzyme F420:heterodisulfide oxidoreductase, a proton-translocating redox system in methanogenic bacteria. Proc Natl Acad Sci USA 87:9449–9453PubMedCrossRefGoogle Scholar
  17. Deppenmeier U, Blaut M, Schmidt B, Gottschalk G (1992) Purification and properties of a F420-nonreactive, membrane-bound hydrogenase from Methanosarcina strain Gö1. Arch Microbiol 157:505–511PubMedGoogle Scholar
  18. Deppenmeier U et al (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4:453–461PubMedGoogle Scholar
  19. Dinnbier U, Limpinsel E, Schmid R, Bakker EP (1988) Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells in Escherichia coli K-12 to elevated sodium chloride concentrations. Arch Microbiol 150:348–357PubMedCrossRefGoogle Scholar
  20. Ehlers C, Veit K, Gottschalk G, Schmitz RA (2002) Functional organisation of a single nif cluster in the mesophilic archaeon Methanosarcina mazei strain Gö1. Archaea 1:143–150PubMedCrossRefGoogle Scholar
  21. Ehlers C, Weidenbach K, Veit K, Deppenmeier U, Metcalf WW, Schmitz RA (2005a) Development of genetic methods and construction of a chromosomal glnK1 mutant in Methanosarcina mazei strain Gö1. Mol Genet Genomics 273:290–298PubMedCrossRefGoogle Scholar
  22. Ehlers C, Weidenbach K, Veit K, Forchhammer K, Schmitz RA (2005b) Unique mechanistic features of post-translational regulation of glutamine synthetase activity in Methanosarcina mazei strain Gö1 in response to nitrogen availability. Mol Microbiol 55:1841–1854PubMedCrossRefGoogle Scholar
  23. Empadinhas N, da Costa MS (2006) Diversity and biosynthesis of compatible solutes in hyper/thermophiles. Int Microbiol 9:199–206PubMedGoogle Scholar
  24. Ferry JG (1992) Biochemistry of methanogenesis. Crit Rev Biochem Molec Biol 27:473–503CrossRefGoogle Scholar
  25. Galagan JE et al (2002) The genome of Methanosarcina acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542PubMedCrossRefGoogle Scholar
  26. Galinski EA, Trüper HG (1994) Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108CrossRefGoogle Scholar
  27. Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond B Biol Sci 359:1249–1266PubMedCrossRefGoogle Scholar
  28. Hendrickson EL et al (2004) Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 186:6956–6969PubMedCrossRefGoogle Scholar
  29. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372PubMedCrossRefGoogle Scholar
  30. Hovey R et al (2005) DNA microarray analysis of Methanosarcina mazei Gö1 reveals adaptation to different methanogenic substrates. Mol Genet Genomics 273:225–239PubMedCrossRefGoogle Scholar
  31. Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983) Methanococcus jannaschii sp.nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261CrossRefGoogle Scholar
  32. Jones WJ, Nagle DP, Whitman WB (1987) Methanogens and diversity of archaebacteria. Microbiol Rev 51:135–177PubMedGoogle Scholar
  33. Jung K, Altendorf K (2002) Towards an understanding of the molecular mechanisms of stimulus perception and signal transduction by the KdpD/KdpE system of Escherichia coli. J Mol Microbiol Biotechnol 4:223–228PubMedGoogle Scholar
  34. Jussofie A, Mayer F, Gottschalk G (1986) Methane formation from methanol and molecular hydrogen by protoplasts of new methanogenic isolates and inhibition by dicyclohexylcarbodiimide. Arch Microbiol 146:245–249CrossRefGoogle Scholar
  35. Kandler O, König H (1998) Cell wall polymers in Archaea (Archaebacteria). Cell Mol Life Sci 54:305–308PubMedCrossRefGoogle Scholar
  36. Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330PubMedCrossRefGoogle Scholar
  37. Kühn W, Gottschalk G (1983) Characterization of the cytochromes occurring in Methanosarina species. Eur J Biochem 135:89–94PubMedCrossRefGoogle Scholar
  38. Kühn W, Fiebig K, Walther R, Gottschalk G (1979) Presence of a cytochrome b 559 in Methanosarcina barkeri. FEBS Lett 105:271–274PubMedCrossRefGoogle Scholar
  39. Lai MC, Sowers KR, Robertson DE, Roberts MF, Gunsalus RP (1991) Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J Bacteriol 173:5352–5358PubMedGoogle Scholar
  40. Lanyi JK (1979) The role of Na+ in transport processes of bacterial membranes. Biochim Biophys Acta 559:377–397PubMedGoogle Scholar
  41. Lienard T, Becher B, Marschall M, Bowien S, Gottschalk G (1996) Sodium ion translocation by N 5-methyltetrahydromethanopterin:coenzyme M methyltransferase from Methanosarcina mazei Gö1 reconstituted in ether lipid liposomes. Eur J Biochem 239:857–864PubMedCrossRefGoogle Scholar
  42. Maeder DL et al (2006) The Methanosarcina barkeri genome: comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. J Bacteriol 188:7922–7931PubMedCrossRefGoogle Scholar
  43. Martin DD, Ciulla RA, Roberts MF (1999) Osmoadaptation in archaea. Appl Environ Microbiol 65:1815–1825PubMedGoogle Scholar
  44. Martin DD, Ciulla RA, Robinson PM, Roberts MF (2001) Switching osmolyte strategies: response of Methanococcus thermolithotrophicus to changes in external NaCl. Biochim Biophys Acta 1524:1–10PubMedGoogle Scholar
  45. Müller V, Spanheimer R, Santos H (2005) Stress response by solute accumulation in archaea. Curr Opin Microbiol 8:729–736PubMedCrossRefGoogle Scholar
  46. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348PubMedGoogle Scholar
  47. Oren A, Heldal M, Norland S, Galinski EA (2002) Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber. Extremophiles 6:491–498PubMedCrossRefGoogle Scholar
  48. Pflüger K, Baumann S, Gottschalk G, Lin W, Santos H, Müller V (2003) Lysine-2,3-aminomutase and β-lysine acetyltransferase genes of methanogenic archaea are salt induced and are essential for the biosynthesis of N ε-acetyl-β-lysine and growth at high salinity. Appl Environ Microbiol 69:6047–6055PubMedCrossRefGoogle Scholar
  49. Pflüger K, Wieland H, Müller V (2005) Osmoadaptation in methanogenic archaea: recent insights from a genomic perspective. In: Gunde-Cimerman N, Oren A, Plemenitas A (eds) Adaptation to life at hight salt concentrations in archaea, bacteria, and eukarya. Springer, Dordrecht, pp 241–251Google Scholar
  50. Pflüger K et al (2007) Identification of genes involved in salt adaptation in the archaeon Methanosarcina mazei Gö1 using genome-wide gene expression profiling. FEMS Microbiol Lett 277:79–89PubMedCrossRefGoogle Scholar
  51. Poolman B, Glaasker E (1998) Regulation of compatible solute accumulation in bacteria. Mol Microbiol 29:397–407PubMedCrossRefGoogle Scholar
  52. Poolman B, Spitzer JJ, Wood JM (2004) Bacterial osmosensing: roles of membrane structure and electrostatics in lipid–protein and protein–protein interactions. Biochim Biophys Acta 1666:88–104PubMedCrossRefGoogle Scholar
  53. Proctor LM, Lai R, Gunsalus RP (1997) The methanogenic archaeon Methanosarcina thermophila TM-1 possesses a high-affinity glycine betaine transporter involved in osmotic adaptation. Appl Environ Microbiol 63:2252–2257PubMedGoogle Scholar
  54. Roberts MF (2000) Osmoadaptation and osmoregulation in archaea. Front Biosci 5:796–812CrossRefGoogle Scholar
  55. Roberts MF (2004) Osmoadaptation and osmoregulation in archaea: update 2004. Front Biosci 9:1999–2019PubMedCrossRefGoogle Scholar
  56. Roberts MF, Lai MC, Gunsalus RP (1992) Biosynthetic pathways of the osmolytes N ε-acetyl-β-lysine, β-glutamine, and betaine in Methanohalophilus strain FDF1 suggested by nuclear magnetic resonance analyses. J Bacteriol 174:6688–6693PubMedGoogle Scholar
  57. Robertson DE, Noll D, Roberts MF, Menaia JAGF, Boone DR (1990) Detection of the osmoregulator betaine in methanogens. Appl Environ Microbiol 56:563–565PubMedGoogle Scholar
  58. Roeßler M, Müller V (2001) Osmoadaptation in bacteria and archaea: common principles and differences. Environ Microbiol 3:743–754CrossRefGoogle Scholar
  59. Roeßler M, Pflüger K, Flach H, Lienard T, Gottschalk G, Müller V (2002) Identification of a salt-induced primary transporter for glycine betaine in the methanogen Methanosarcina mazei Gö1. Appl Environ Microbiol 68:2133–2139PubMedCrossRefGoogle Scholar
  60. Saito H, Tatebayashi K (2004) Regulation of the osmoregulatory HOG MAPK cascade in yeast. J Biochem 136:267–272PubMedCrossRefGoogle Scholar
  61. Saum SH, Müller V (2007) Salinity-dependent switching of osmolyte strategies in a moderately halophilic bacterium: glutamate induces proline biosynthesis in Halobacillus halophilus. J Bacteriol 189:6968–6975PubMedCrossRefGoogle Scholar
  62. Saum SH, Müller V (2008) Growth phase-dependent switch in osmolyte strategy in a moderate halophile: ectoine is a minor osmolyte but major stationary phase solute in Halobacillus halophilus. Environ Microbiol 10(3):716–726PubMedCrossRefGoogle Scholar
  63. Saum SH, Sydow JF, Palm P, Pfeiffer F, Oesterhelt D, Müller V (2006) Biochemical and molecular characterization of the biosynthesis of glutamine and glutamate, two major compatible solutes in the moderately halophilic bacterium Halobacillus halophilus. J Bacteriol 188:6808–6815PubMedCrossRefGoogle Scholar
  64. Schmidt S, Pflüger K, Kögl S, Spanheimer R, Müller V (2007) The salt-induced ABC transporter Ota of the methanogenic archaeon Methanosarcina mazei Gö1 is a glycine betaine transporter. FEMS Microbiol Lett 277:44–49PubMedCrossRefGoogle Scholar
  65. Sheikh-Hamad D, Gustin MC (2004) MAP kinases and the adaptive response to hypertonicity: functional preservation from yeast to mammals. Am J Physiol Renal Physiol 287:1102–1110CrossRefGoogle Scholar
  66. Sowers KR, Gunsalus RP (1995) Halotolerance in Methanosarcina spp.: role of N ε-acetyl-β-lysine, α-glutamate, glycine betaine, and K+ as compatible solutes for osmotic adaptation. Appl Environ Microbiol 61:4382–4388PubMedGoogle Scholar
  67. Sowers KR, Baron SF, Ferry JG (1984) Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47:971–978PubMedGoogle Scholar
  68. Sowers KR, Robertson DE, Noll D, Gunsalus RP, Roberts MF (1990) N ε-acetyl-β-lysine—an osmolyte synthesized by methanogenic archaebacteria. Proc Natl Acad Sci USA 87:9083–9087PubMedCrossRefGoogle Scholar
  69. Sowers KR, Boone JE, Gunsalus RP (1993) Disaggregation of Methanosarcina spp. and growth as single cells at elevated osmolarity. Appl Environ Microbiol 59:3832–3839PubMedGoogle Scholar
  70. Spanheimer R, Hoffmann M, Kögl S, Schmidt S, Pflüger K, Müller V (2008) Differential regulation of Ota and Otb, two primary glycine betaine transporters in the methanogenic archaeon Methanosarcina mazei Gö1. J Mol Microbiol Biotechnol (in press)Google Scholar
  71. Sugiura A, Hirokawa K, Nakashima K, Mizuno T (1994) Signal-sensing mechanisms of the putative osmosensor KdpD in Escherichia coli. Mol Microbiol 14:929–938PubMedCrossRefGoogle Scholar
  72. Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406PubMedGoogle Scholar
  73. Veit K et al (2006) Global transcriptional analysis of Methanosarcina mazei strain Gö1 under different nitrogen availabilities. Mol Genet Genomics 276:41–55PubMedCrossRefGoogle Scholar
  74. Whatmore AM, Chudek JA, Reed RH (1990) The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J Gen Microbiol 136:2527–2535PubMedGoogle Scholar
  75. Wood JM (1999) Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63:230–262PubMedGoogle Scholar
  76. Wood JM et al (2001) Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp Biochem Physiol A 130:437–460CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Molecular Microbiology and Bioenergetics, Institute of Molecular BiosciencesJohann Wolfgang Goethe University FrankfurtFrankfurt am MainGermany

Personalised recommendations