Archives of Microbiology

, Volume 189, Issue 6, pp 531–539 | Cite as

Diversity, ecology, and genomics of the Roseobacter clade: a short overview

  • Thorsten Brinkhoff
  • Helge-Ansgar Giebel
  • Meinhard Simon
Mini Review

Abstract

Due to worldwide distribution, high abundance and availability of physiologically diverse isolates the Roseobacter clade is one of the most intensively studied groups of marine bacteria. Organisms of this clade have been detected in a large variety of habitats, from coastal regions to deep-sea sediments and from polar ice to tropical latitudes, and constitute up to 25% of the total bacterial community. Use of a multitude of organic compounds, sulfur oxidation, aerobic anoxygenic photosynthesis, oxidation of carbon monoxide, DMSP demethylation, and production of secondary metabolites are some of the important traits found in this clade. Physiological characteristics and the different isolation sources indicate that organisms of the Roseobacter clade occupy various ecological niches. Since the first description of Roseobacter spp. in 1991, 38 affiliated and validated genera have been described. More than half of these descriptions have been published within the last 3 years. Genome sequencing of currently 40 different strains demonstrates enormous interest in the genetic and metabolic diversity of these bacteria. Plasmids with an enormous size range are also widespread in the Roseobacter clade indicating an adaptive genomic structure. Comparisons with other highly relevant groups, like the SAR11 clade, have shown drastic differences in genome organization.

Keywords

Microbial ecology Rhodobacterales Rhodobacteraceae Taxonomy 

References

  1. Allgaier M, Uphoff H, Felske A, Wagner-Döbler I (2003) Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl Environ Microbiol 69:5051–5059PubMedCrossRefGoogle Scholar
  2. Arahal DR, Macian MC, Garay E, Pujalte MJ (2005) Thalassobius mediterraneus gen. nov., sp nov., and reclassification of Ruegeria gelatinovorans as Thalassobius gelatinovorus comb. nov. Int J Syst Evol Microbiol 55:2371–2376PubMedCrossRefGoogle Scholar
  3. Beja O, Suzuki MT, Heidelberg JF, Nelson WC, Preston CM, Hamada T, Eisen JA, Fraser CM, DeLong EF (2002) Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415:630–633PubMedCrossRefGoogle Scholar
  4. Biebl H, Allgaier M, Tindall BJ, Koblizek M, Lunsdorf H, Pukall R, Wagner-Döbler I (2005) Dinoroseobacter shibae gen. nov., sp nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol 55:1089–1096PubMedCrossRefGoogle Scholar
  5. Brinkhoff T, Bach G, Heidorn T, Liang LF, Schlingloff A, Simon M (2004) Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl Environ Microbiol 70:2560–2565PubMedCrossRefGoogle Scholar
  6. Brinkmeyer R, Knittel K, Jürgens J, Weyland H, Amann R, Helmke E (2003) Diversity and structure of bacterial communities in Arctic versus Antarctic Pack Ice. Appl Environ Microbiol 69:6610–6619PubMedCrossRefGoogle Scholar
  7. Bruhn JB, Nielsen KF, Hjelm M, Hansen M, Bresciani J, Schulz S, Gram L (2005) Ecology, inhibitory activity, and morphogenesis of a marine antagonistic bacterium belonging to the Roseobacter clade. Appl Environ Microbiol 71:7263–7270PubMedCrossRefGoogle Scholar
  8. Bruhn JB, Gram L, Belas R (2007) Production of antibacterial compounds and biofilm formation by Roseobacter species are influenced by culture conditions. Appl Environ Microbiol 73:442–450PubMedCrossRefGoogle Scholar
  9. Buchan A, Gonzalez JM, Moran MA (2005) Overview of the marine Roseobacter lineage. Appl Environ Microbiol 71:5665–5677PubMedCrossRefGoogle Scholar
  10. Chen F, Wang K, Stewart J, Belas R (2006) Induction of multiple prophages from a marine bacterium: a genomic approach. Appl Environ Microbiol 72:4995–5001PubMedCrossRefGoogle Scholar
  11. Choi DH, Cho JC, Lanoil BD, Giovannoni SJ, Cho BC (2007) Maribius salinus gen. nov., sp. nov., isolated from a solar saltern and Maribius pelagius sp. nov., cultured from the Sargasso Sea, belonging to the Roseobacter clade. Int J Syst Evol Microbiol 57:270–275PubMedCrossRefGoogle Scholar
  12. Denner EBM, Kolari M, Hoornstra D, Tsitko I, Kämpfer P, Busse HJ, Salkinoja-Salonen M (2006) Rubellimicrobium thermophilum gen. nov., sp nov., a red-pigmented, moderately thermophilic bacterium isolated from coloured slime deposits in paper machines. Int J Syst Evol Microbiol 56:1355–1362PubMedCrossRefGoogle Scholar
  13. Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M, Rappe MS, Short JM, Carrington JC, Mathur EJ (2005) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:1242–1245PubMedCrossRefGoogle Scholar
  14. Gosink JJ, Herwig RP, Staley JT (1997) Octadecabacter arcticus gen nov, sp nov, and O. antarcticus, sp nov, nonpigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. Syst Appl Microbiol 20:356–365Google Scholar
  15. Gram L, Grossart HP, Schlingloff A, Kiorboe T (2002) Possible quorum sensing in marine snow bacteria: production of acylated homoserine lactones by Roseobacter strains isolated from marine snow. Appl Environ Microbiol 68:4111–4116PubMedCrossRefGoogle Scholar
  16. Hansel CM, Francis CA (2006) Coupled photochemical and enzymatic Mn(II) oxidation pathways of a planktonic Roseobacter-like bacterium. Appl Environ Microbiol 72:3543–3549PubMedCrossRefGoogle Scholar
  17. Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, Vetriani C, Koblizek M, Rathgeber C, Falkowski PG (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495PubMedCrossRefGoogle Scholar
  18. Labrenz M, Collins MD, Lawson PA, Tindall BJ, Braker G, Hirsch P (1998) Antarctobacter heliothermus gen. nov., sp. nov., a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Evol Microbiol 48:1363–1372Google Scholar
  19. Labrenz M, Lawson PA, Tindall BJ, Collins MD, Hirsch P (2005) Roseisalinus antarcticus gen. nov., sp. nov., a novel aerobic bacteriochlorophyll a-producing a-proteobacterium isolated from hypersaline Ekho Lake, Antarctica. Int J Syst Evol Microbiol 55:41–47PubMedCrossRefGoogle Scholar
  20. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371PubMedCrossRefGoogle Scholar
  21. Malmstrom RR, Straza TRA, Cottrell MT, Kirchman DL (2007) Diversity, abundance, and biomass production of bacterial groups in the western Arctic Ocean. Aquat Microb Ecol 47:45–55CrossRefGoogle Scholar
  22. Martens T, Heidorn T, Pukall R, Simon M, Tindall BJ, Brinkhoff T (2006) Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1998 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria, and Leisingera. Int J Syst Evol Microbiol 56:1293–1304PubMedCrossRefGoogle Scholar
  23. Martens T, Gram L, Grossart H-P, Kessler D, Müller R, Simon M, Wenzel SC, Brinkhoff T (2007) Bacteria of the Roseobacter clade show potential for secondary metabolite production. Microb Ecol 54:31–42PubMedCrossRefGoogle Scholar
  24. Martinez-Checa F, Quesada E, Martinez-Canovas MJ, Llamas I, Bejar V (2005) Palleronia marisminoris gen. nov., sp. nov., a moderately halophilic, exopolysaccharideproducing bacterium belonging to the ‘Alphaproteobacteria’, isolated from a saline soil. Int J Syst Evol Microbiol 55:2525–2530PubMedCrossRefGoogle Scholar
  25. Moran MA, Buchan A, Gonzalez JM, Heidelberg JF, Whitman WB, Kiene RP, Henriksen JR, King GM, Belas R, Fuqua C, Brinkac L, Lewis M, Johri S, Weaver B, Pai G, Eisen JA, Rahe E, Sheldon WM, Ye WY, Miller TR, Carlton J, Rasko DA, Paulsen IT, Ren QH, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Rosovitz MJ, Haft DH, Selengut J, Ward N (2004) Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432:910–913PubMedCrossRefGoogle Scholar
  26. Moran MA, Belas R, Schell MA, González JM, Sun F, Sun S, Binder BJ, Edmonds J, Ye W, Orcutt B, Howard EC, Meile C, Palefsky W, Goesmann A, Ren Q, Paulsen I, Ulrich LE, Thompson LS, Saunders E, Buchan A (2007) Ecological genomics of marine Roseobacters. Appl Environ Microbiol 73:4559–69PubMedCrossRefGoogle Scholar
  27. Muramatsu Y, Uchino Y, Kasai H, Suzuki K, Nakagawa Y (2007) Ruegeria mobilis sp. nov., a member of the Alphaproteobacteria isolated in Japan and Palau. Int J Syst Evol Microbiol 57:1304–1309PubMedCrossRefGoogle Scholar
  28. Petursdottir SK, Kristjansson JK (1997) Silicibacter lacuscaerulensis gen. nov., sp. nov., a mesophilic moderately halophilic bacterium characteristic of the Blue Lagoon geothermal lake in Iceland. Extremophiles 1:94–99PubMedCrossRefGoogle Scholar
  29. Pommier T, Pinhassi J, Hagström A (2005) Biogeographic analysis of ribosomal RNA clusters from marine bacterioplankton. Aquat Microbial Ecol 41:79–89CrossRefGoogle Scholar
  30. Pradella S, Allgaier M, Hoch C, Pauker O, Stackebrandt E, Wagner-Döbler I (2004) Genome organization and localization of the pufLM genes of the photosynthesis reaction center in phylogenetically diverse marine Alphaproteobacteria. Appl Environ Microbiol 70:3360–3369PubMedCrossRefGoogle Scholar
  31. Pujalte MJ, Macian MC, Arahal DR, Ludwig W, Schleifer KH, Garay E (2005) Nereida ignava gen. nov., sp nov., a novel aerobic marine alpha-proteobacterium that is closely related to uncultured Prionitis (alga) gall symbionts. Int J Syst Evol Microbiol 55:631–636PubMedCrossRefGoogle Scholar
  32. Rao D, Webb JS, Kjelleberg S (2005) Competitive interactions in mixed-species biofilms containing the marine bacterium Pseudoalteromonas tunicata. Appl Environ Microbiol 71:1729–1736PubMedCrossRefGoogle Scholar
  33. Ruiz-Ponte C, Cilia V, Lambert C, Nicolas JL (1998) Roseobacter gallaeciensis sp. nov., a new marine bacterium isolated from rearings and collectors of the scallop Pecten maximus. Int J Syst Evol Microbiol 48:537–542CrossRefGoogle Scholar
  34. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K, Beeson K, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter JE, Li K, Kravitz S, Heidelberg JF, Utterback T, Rogers YH, Falcon LI, Souza V, Bonilla-Rosso G, Eguiarte LE, Karl DM, Sathyendranath S, Platt T, Bermingham E, Gallardo V, Tamayo-Castillo G, Ferrari MR, Strausberg RL, Nealson K, Friedman R, Frazier M, Venter JC (2007) The Sorcerer II global ocean sampling expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol 5:e77PubMedCrossRefGoogle Scholar
  35. Schaefer JK, Goodwin KD, McDonald IR, Murrell JC, Oremland RS (2002) Leisingera methylohalidivorans gen. nov., sp. nov., a marine methylotroph that grows on methyl bromide. Int J Syst Evol Microbiol 52:851–859PubMedCrossRefGoogle Scholar
  36. Schwalbach MS, Fuhrman JA (2005) Wide-ranging abundances of aerobic anoxygenic phototrophic bacteria in the world ocean revealed by epifluorescence microscopy and quantitative PCR. Limnol Oceanogr 50:620–628CrossRefGoogle Scholar
  37. Sekiguchi H, Koshikawa H, Hiroki M, Murakami S, Xu K, Watanabe M, Nakahara T, Zhu M, Uchiyama H (2002) Bacterial distribution and phylogenetic diversity in the Changjiang estuary before the construction of the Three Gorges Dam. Microb Ecol 43:82–91PubMedCrossRefGoogle Scholar
  38. Selje N, Simon M, Brinkhoff T (2004) A newly discovered Roseobacter cluster in temperate and polar oceans. Nature 427:445–448PubMedCrossRefGoogle Scholar
  39. Shiba T (1991) Roseobacter litoralis gen-nov, sp-nov, and Roseobacter denitrificans sp-nov, aerobic pink-pigmented bacteria which contain bacteriochlorophyll-a. Syst Appl Microbiol 14: 140–145Google Scholar
  40. Shiba T, Simidu U, Taga N (1979) Another aerobic bacterium which contains bacteriochlorophyll a. Bull Jpn Soc Sci Fish 45:801Google Scholar
  41. Sorokin DY (1995) Sulfitobacter pontiacus gen-nov, sp-nov—a new heterotrophic bacterium from the Black Sea, specialized on sulfite oxidation. Microbiology 64:295–305Google Scholar
  42. Staley JT, Gosink JJ (1999) Poles apart: biodiversity and biogeography of sea ice bacteria. Ann Rev Microbiol 53:198–215CrossRefGoogle Scholar
  43. Swingley WD, Sadekar S, Mastrian SD, Matthies HJ, Hao J, Ramos H, Acharya CR, Conrad AL, Taylor HL, Dejesa LC, Shah MK, O’Huallachain ME, Lince MT, Blankenship RE, Beatty JT, Touchman JW (2007) The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic rather than photosynthetic metabolism. J Bacteriol 189:683–690PubMedCrossRefGoogle Scholar
  44. Uchino Y, Hirata A, Yokota A, Sugiyama J (1998) Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 44:201–210PubMedCrossRefGoogle Scholar
  45. Urbance JW, Bratina BJ, Stoddard SF, Schmidt TM (2001) Taxonomic characterization of Ketogulonigenium vulgare gen. nov., sp. nov. and Ketogulonigenium robustum sp. nov., which oxidize l-sorbose to 2-keto-l-gulonic acid. Int J Syst Evol Microbiol 51:1059–1070PubMedGoogle Scholar
  46. Wagner-Döbler I, Biebl H (2006) Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol 60:255–280PubMedCrossRefGoogle Scholar
  47. Wagner-Döbler I, Rheims H, Felske A, El-Ghezal A, Flade-Schorder D, Laatsch H, Lang S, Pukall R, Tindall BJ (2004) Oceanibulbus indolifex gen. nov., sp nov., a North Sea alphaproteobacterium that produces bioactive metabolites. Int J Syst Evol Microbiol 54:1177–1184PubMedCrossRefGoogle Scholar
  48. Yi H, Lim YW, Chun J (2007) Taxonomic evaluation of the genera Ruegeria and Silicibacter: a proposal to transfer the genus Silicibacter Petursdottir and Kristjansson 1999 to the genus Ruegeria Uchino et al. 1999. Int J Syst Evol Microbiol 57:815–819PubMedCrossRefGoogle Scholar
  49. Ying JY, Wang BJ, Dai X, Yang SS, Liu SJ, Liu ZP (2007) Wenxinia marina gen. nov., sp. nov., a novel member of the Roseobacter clade isolated from oilfield sediments of the South China Sea. Int J Syst Evol Microbiol 57:1711–1716PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Thorsten Brinkhoff
    • 1
  • Helge-Ansgar Giebel
    • 1
  • Meinhard Simon
    • 1
  1. 1.Institute for Chemistry and Biology of the Marine Environment (ICBM)University of OldenburgOldenburgGermany

Personalised recommendations