Advertisement

Archives of Microbiology

, Volume 189, Issue 2, pp 141–150 | Cite as

Transcript analysis of the Halothiobacillus neapolitanus cso operon

  • Fei Cai
  • Sabine Heinhorst
  • Jessup M. Shively
  • Gordon C. CannonEmail author
Original Paper

Abstract

Carboxysomes are polyhedral microcompartments that sequester the CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase in many autotrophic bacteria. Their protein constituents are encoded by a set of tightly clustered genes that are thought to form an operon (the cso operon). This study is the first to systematically address transcriptional regulation of carboxysome protein expression. Quantification of transcript levels derived from the cso operon of Halothiobacillus neapolitanus, the sulfur oxidizer that has emerged as the model organism for carboxysome structural and functional studies, indicated that all cso genes are transcribed, albeit at different levels. Combined with comparative genomic evidence, this study supports the premise that the cso gene cluster constitutes an operon. Characterization of transcript 5′- and 3′-ends and examination of likely regulatory sequences and secondary structure elements within the operon suggested potential strategies by which the vastly different levels of individual carboxysome proteins in the microcompartment could have arisen.

Keywords

Carboxysome operon Halothiobacillus neapolitanus Transcription Real-time PCR 

Notes

Acknowledgments

This work was supported by grants MCB-0444568 and DMR-0213883 from the National Science Foundation. The authors thank Dr. C. A. Kerfeld for critically reading a draft of this manuscript and for providing many helpful suggestions.

References

  1. Abe H, Abo T, Aiba H (1999) Regulation of intrinsic terminator by translation in Escherichia coli: transcription termination at a distance downstream. Genes Cells 4:87–97PubMedCrossRefGoogle Scholar
  2. Baker SH, Jin S, Aldrich HC, Howard GT, Shively JM (1998) Insertion mutation of the form I cbbL gene encoding ribulose bisphosphate carboxylase/oxygenase (RuBisCO) in Thiobacillus neapolitanus results in expression of form II RuBisCO, loss of carboxysomes, and an increased CO2 requirement for growth. J Bacteriol 180:4133–4139PubMedGoogle Scholar
  3. Baker SH, Lorbach SC, Rodriguez-Buey M, Williams DS, Aldrich HC, Shively JM (1999) The correlation of the gene csoS2 of the carboxysome operon with two polypeptides of the carboxysome in Thiobacillus neapolitanus. Arch Microbiol 172:233–239PubMedCrossRefGoogle Scholar
  4. Banerjee S, Chalissery J, Bandey I, Sen R (2006) Rho-dependent transcription termination: more questions than answers. J Microbiol 44:11–22PubMedGoogle Scholar
  5. Beller HR et al (2006) The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J Bacteriol 188:1473–1488PubMedCrossRefGoogle Scholar
  6. Beudeker RF, Cannon GC, Kuenen JG, Shively JM (1980) Relations between d-ribulose-1, 5-bisphosphate carboxylase, carboxysomes, and CO2 fixing capacity in the obligate chemolithotroph Thiobacillus neapolitanus grown under different limitations in the chemostat. Arch Microbiol 124:185–189CrossRefGoogle Scholar
  7. Cannon GC et al (2003) Organization of carboxysome genes in the thiobacilli. Curr Microbiol 46:115–119PubMedCrossRefGoogle Scholar
  8. Cannon GC, Heinhorst S, Bradburne CE, Shively JM (2002) Carboxysome genomics: a status report. Funct Plant Biol 29:175–182CrossRefGoogle Scholar
  9. Cannon GC, Shively JM (1983) Characterization of a homogeneous preparation of carboxysomes from Thiobacillus neapolitanus. Arch Microbiol 134:52–59CrossRefGoogle Scholar
  10. Carafa YdA, Brody E, Thermes C (1990) Prediction of rho-independent Escherichia coli transcription terminators: a statistical analysis of their RNA stem-loop structures. J Mol Biol 216:835–858CrossRefGoogle Scholar
  11. Chen X, Su Z, Dam P, Palenik B, Xu Y, Jiang T (2004) Operon prediction by comparative genomics: an application to the Synechococcus sp. WH8102 genome. Nucleic Acids Res 32:2147–2157PubMedCrossRefGoogle Scholar
  12. Ciampi MS (2006) Rho-dependent terminators and transcription termination. Microbiology 152:2515–2528PubMedCrossRefGoogle Scholar
  13. English RS, Lorbach SC, Qin X, Shively JM (1994) Isolation and characterization of a carboxysome shell gene from Thiobacillus neapolitanus. Mol Microbiol 12:647–654PubMedCrossRefGoogle Scholar
  14. Ermolaeva MD, Khalak HG, White O, Smith HO, Salzberg SL (2000) Prediction of transcription terminators in bacterial genomes. J Mol Biol 301:27–33PubMedCrossRefGoogle Scholar
  15. Garczarek L et al (2001) Differential expression of antenna and core genes in Prochlorococcus PCC 9511 (oxyphotobacteria) grown under a modulated light-dark cycle. Environ Microbiol 3:168–175PubMedCrossRefGoogle Scholar
  16. Harley CB, Reynolds RP (1987) Analysis of E. coli promoter sequences. Nucleic Acids Res 15:2343–2361PubMedCrossRefGoogle Scholar
  17. Heck C, Balzer A, Fuhrmann O, Klug G (2000) Initial events in the degradation of the polycistronic puf mRNA in Rhodobacter capsulatus and consequences for further processing steps. Mol Microbiol 35:90–100PubMedCrossRefGoogle Scholar
  18. Heinhorst S, Cannon GC, Shively JM (2006a) Carboxysomes and carboxysome-like inclusions. In: Shively JM (ed) Microbial monographs. Springer, Berlin, pp 141–164Google Scholar
  19. Heinhorst S, Williams EB, Cai F, Murin CD, Shively JM, Cannon GC (2006b) Characterization of the carboxysomal carbonic anhydrase CsoSCA from Halothiobacillus neapolitanus. J Bacteriol 188:8087–8094PubMedCrossRefGoogle Scholar
  20. Hershberg R, Bejerano G, Santos-Zavaleta A, Margalit H (2001) PromEC: an updated database of Escherichia coli mRNA promoters with experimentally identified transcriptional start sites. Nucleic Acids Res 29:277PubMedCrossRefGoogle Scholar
  21. Jacob E, Sasikumar R, Nair KNR (2005) A fuzzy guided genetic algorithm for operon prediction. Bioinformatics 21:1403–1407PubMedCrossRefGoogle Scholar
  22. Kennell D (2002) Processing endoribonucleases and mRNA degradation in bacteria. J Bacteriol 184:4645–4657PubMedCrossRefGoogle Scholar
  23. Kerfeld CA et al (2005) Protein structures forming the shell of primitive bacterial organelles. Science 309:936–938PubMedCrossRefGoogle Scholar
  24. Kushner SR (2002) mRNA decay in Escherichia coli comes of age. J Bacteriol 184:4658–4665PubMedCrossRefGoogle Scholar
  25. Liu X, Gorovsky MA (1993) Mapping the 5′ and 3′ ends of Tetrahymena thermophila mRNAs using RNA ligase mediated amplification of cDNA ends (RLM-RACE). Nucleic Acids Res 21:4954–4960PubMedCrossRefGoogle Scholar
  26. Nudler E, Gottesman ME (2002) Transcription termination and anti-termination in E. coli. Genes Cells 7:755–768PubMedCrossRefGoogle Scholar
  27. Prestridge D (1991) SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. CABIOS 7:203–206PubMedGoogle Scholar
  28. Price MN, Huang KH, Alm EJ, Arkin AP (2005) A novel method for accurate operon predictions in all sequenced prokaryotes. Nucleic Acids Res 33:880–892PubMedCrossRefGoogle Scholar
  29. Purohit K, McFadden BA, Shaykh MM (1976) d-Ribulose-1,5-bisphosphate carboxylase and polyhedral inclusion bodies in Thiobacillus intermedius. J Bacteriol 127:516–522PubMedGoogle Scholar
  30. Ramamoorthy R, McClain NA, Gautam A, Scholl-Meeker D (2005) Expression of the bmpB gene of Borrelia burgdorferi is modulated by two distinct transcription termination events. J Bacteriol 187:2592–2600PubMedCrossRefGoogle Scholar
  31. Rauhut R, Klug G (1999) mRNA degradation in bacteria. FEMS Microbiol Rev 23:353–370PubMedCrossRefGoogle Scholar
  32. Salgado H, Moreno-Hagelsieb G, Smith TF, Collado-Vides J (2000) Operons in Escherichia coli: genomic analyses and predictions. Proc Natl Acad Sci USA 97:6652–6657PubMedCrossRefGoogle Scholar
  33. Sawaya MR et al (2006) The structure of beta-carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two. J Biol Chem 281:7546–7555PubMedCrossRefGoogle Scholar
  34. Schaeferjohann J, Bednarski R, Bowien B (1996) Regulation of CO2 assimilation in Ralstonia eutropha: premature transcription termination within the cbb operon. J Bacteriol 178:6714–6719Google Scholar
  35. Scott KM et al (2006) The genome of deep-sea vent chemolithoautotroph Thiomicrospira crunogena XCL-2. PLoS Biol 4:2196–2212CrossRefGoogle Scholar
  36. So AK, Espie GS, Williams EB, Shively JM, Heinhorst S, Cannon GC (2004) A novel evolutionary lineage of carbonic anhydrase (epsilon class) is a component of the carboxysome shell. J Bacteriol 186:623–630PubMedCrossRefGoogle Scholar
  37. Tsai Y et al (2007) The structure of the shell protein CsoS1A from Halothiobacillus neapolitanus and its implications for carboxysome function. PLoS Biol 5:1–10Google Scholar
  38. Vogel J, Axmann IM, Herzel H, Hess WR (2003) Experimental and computational analysis of transcriptional start sites in the cyanobacterium Prochlorococcus MED4. Nucleic Acids Res 31:2890–2899PubMedCrossRefGoogle Scholar
  39. Yada T, Nakao M, Totoki Y, Nakai K (1999) Modeling and predicting transcriptional units of Escherichia coli genes using hidden Markov models. Bioinformatics 15:987–993PubMedCrossRefGoogle Scholar
  40. Zheng Y, Szustakowski JD, Fortnow L, Roberts RJ, Kasif S (2002) Computational identification of operons in microbial genomes. Genome Res 12:1221–1230PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Fei Cai
    • 1
  • Sabine Heinhorst
    • 1
  • Jessup M. Shively
    • 1
    • 2
  • Gordon C. Cannon
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryThe University of Southern MississippiHattiesburgUSA
  2. 2.Department of Genetics and BiochemistryClemson UniversityClemsonUSA

Personalised recommendations