Archives of Microbiology

, Volume 188, Issue 4, pp 411–419 | Cite as

Knockout of crtB or crtI gene blocks the carotenoid biosynthetic pathway in Deinococcus radiodurans R1 and influences its resistance to oxidative DNA-damaging agents due to change of free radicals scavenging ability

  • Lei Zhang
  • Qiao Yang
  • Xuesong Luo
  • Chengxiang Fang
  • Qiuju Zhang
  • Yali Tang
Original Paper


Deinococcus radiodurans R1, a red-pigmented strain of the extremely radioresistant genus Deinococcus, contains a major carotenoid namely deinoxanthin. The high resistance of this organism against the lethal actions of DNA-damaging agents including ionizing radiation and ultraviolet light (UV) has been widely reported. However, the possible antioxidant role of carotenoids in this strain has not been completely elucidated. In this study, we constructed two colorless mutants by knockout of crtB and crtI genes, respectively. Comparative analysis of the two colorless mutants and the wild type showed that the two colorless mutants were more sensitive to ionizing radiation, UV, and hydrogen peroxide, but not to mitomycin-C (MMC). With electron spin resonance (ESR) and spin trapping techniques, we observed that hydroxyl radical signals occurred in the suspensions of UV irradiated Deinococcus radiodurans cells and the intensity of signals was influenced by carotenoids levels. We further showed that the carotenoid extract from the wild type could obviously scavenge superoxide anions generated by the irradiated riboflavin/EDTA system. These results suggest that carotenoids in D. radiodurans R1 function as free radical scavengers to protect this organism against the deleterious effects of oxidative DNA-damaging agents.


Deinococcus radiodurans Carotenoids ESR Free radical 



Ultraviolet light




Electron spin resonance


Reactive oxygen species




  1. Agostini HJ, Carroll JD, Minton KW (1996) Identification and characterization of uvrA, a DNA repair gene of Deinococcus radiodurans. J Bacteriol 178:6759–6765PubMedGoogle Scholar
  2. Battista JR (1997) Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 51:203–224PubMedCrossRefGoogle Scholar
  3. Bruge F, Tiano L, Cacciamani T, Principi F, Littarru GP (2003) Effect of UV-C mediated oxidative stress in leukemia cell lines and its relation to ubiquinone content. Biofactors 18:51–63PubMedGoogle Scholar
  4. Carbonneau MA, Melin AM, Perromat A, Clerc M (1989) The action of free radicals on Deinococcus radiodurans carotenoids. Arch Biochem Biophys 275:244–251PubMedCrossRefGoogle Scholar
  5. Chan WH, Yu JS (2000) Inhibition of UV irradiation-induced oxidative stress and apoptotic biochemical changes in human epidermal carcinoma A431 cells by genistein. J Cell Biochem 78:73–84PubMedCrossRefGoogle Scholar
  6. Clauditz A, Resch A, Wieland KP, Peschel A, Gotz F (2006) Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect Immun 74:4950–4953PubMedCrossRefGoogle Scholar
  7. Earl AM, Rankin SK, Kim KP, Lamendola ON, Battista JR (2002) Genetic evidence that the uvsE gene product of Deinococcus radiodurans R1 is a UV damage endonuclease. J Bacteriol 184:1003–1009PubMedCrossRefGoogle Scholar
  8. Fernandez Zenoff V, Sineriz F, Farias ME (2006) Diverse responses to UV-B radiation and repair mechanisms of bacteria isolated from high-altitude aquatic environments. Appl Environ Microbiol 72:7857–7863PubMedCrossRefGoogle Scholar
  9. Ghosal D, Omelchenko MV, Gaidamakova EK, Matrosova VY, Vasilenko A, Venkateswaran A, Zhai M, Kostandarithes HM, Brim H, Makarova KS, Wackett LP, Fredrickson JK, Daly MJ (2005) How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. FEMS Microbiol Rev 29:361–375PubMedCrossRefGoogle Scholar
  10. Gomes AA, Silva-Junior AC, Oliveira EB, Asad LM, Reis NC, Felzenszwalb I, Kovary K, Asad NR (2005) Reactive oxygen species mediate lethality induced by far-UV in Escherichia coli cells. Redox Rep 10:91–95PubMedCrossRefGoogle Scholar
  11. Kitayama S, Asaka S, Totsuka K (1983) DNA double-strand breakage and removal of cross-links in Deinococcus radiodurans. J Bacteriol 155:1200–1207PubMedGoogle Scholar
  12. Lemee L, Peuchant E, Clerc M, Brunner M, Pfander H (1997) Deinoxanthin: A new carotenoid isolated from Deinococcus radiodurans. Tetrahedron 53:919–926CrossRefGoogle Scholar
  13. Liu Y, Zhou J, Omelchenko MV, Beliaev AS, Venkateswaran A, Stair J, Wu L, Thompson DK, Xu D, Rogozin IB, Gaidamakova EK, Zhai M, Makarova KS, Koonin EV, Daly MJ (2003) Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc Natl Acad Sci USA 100:4191–4196PubMedCrossRefGoogle Scholar
  14. Liu Y, Zhang Q, Fang C, Zhu S, Tang Y, Huang S (2005) Effect of glutathione on UV induction of prophage lambda. Arch Microbiol 183:444–449PubMedCrossRefGoogle Scholar
  15. Markillie LM, Varnum SM, Hradecky P, Wong KK (1999) Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants. J Bacteriol 181:666–669PubMedGoogle Scholar
  16. Meima R, Lidstrom ME (2000) Characterization of the minimal replicon of a cryptic Deinococcus radiodurans SARK plasmid and development of versatile Escherichia coliD. radiodurans shuttle vectors. Appl Environ Microbiol 66:3856–3867PubMedCrossRefGoogle Scholar
  17. Melin AM, Peuchant E, Perromat A, Clerc M (1998) Sensitivity to oxidative damage of two Deinococcus radiodurans strains. J Appl Microbiol 84:531–537CrossRefGoogle Scholar
  18. Minton KW (1994) DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol 13:9–15PubMedCrossRefGoogle Scholar
  19. Misawa N, Satomi Y, Kondo K, Yokoyama A, Kajiwara S, Saito T, Ohtani T, Miki W (1995) Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J Bacteriol 177:6575–6584PubMedGoogle Scholar
  20. Moseley BE (1967) The isolation and some properties of radiation-sensitive mutants of Micrococcus radiodurans. J Gen Microbiol 49:293–300PubMedGoogle Scholar
  21. Narumi I (2003) Unlocking radiation resistance mechanisms: still a long way to go. Trends Microbiol 11:422–425PubMedCrossRefGoogle Scholar
  22. Ohshima H, Iida Y, Matsuda A, Kuwabara M (1996) Damage induced by hydroxyl radicals generated in the hydration layer of gamma-irradiated frozen aqueous solution of DNA. J Radiat Res 37:199–207PubMedCrossRefGoogle Scholar
  23. Omelchenko MV, Wolf YI, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Daly MJ, Koonin EV, Makarova KS (2005) Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance. BMC Evol Biol 5:57PubMedCrossRefGoogle Scholar
  24. Sedkova N, Tao L, Rouviere PE, Cheng Q (2005) Diversity of carotenoid synthesis gene clusters from environmental Enterobacteriaceae strains. Appl Environ Microbiol 71:8141–8146PubMedCrossRefGoogle Scholar
  25. Sen P, Mukherjee S, Bhaumik G, Das P, Ganguly S, Choudhury N, Raha S (2003) Enhancement of catalase activity by repetitive low-grade H2O2 exposures protects fibroblasts from subsequent stress-induced apoptosis. Mutat Res 529:87–94PubMedGoogle Scholar
  26. Shahmohammadi HR, Asgarani E, Terato H, Saito T, Ohyama Y, Gekko K, Yamamoto O, Ide H (1998) Protective roles of bacterioruberin and intracellular KCl in the resistance of Halobacterium salinarium against DNA-damaging agents. J Radiat Res 39:251–262PubMedGoogle Scholar
  27. Smith MD, Lennon E, McNeil LB, Minton KW (1988) Duplication insertion of drug resistance determinants in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol 170:2126–2135PubMedGoogle Scholar
  28. Tao L, Rouviere PE, Cheng Q (2006) A carotenoid synthesis gene cluster from a non-marine Brevundimonas that synthesizes hydroxylated astaxanthin. Gene 379:101–108PubMedCrossRefGoogle Scholar
  29. Tatsuzawa H, Maruyama T, Misawa N, Fujimori K, Nakano M (2000) Quenching of singlet oxygen by carotenoids produced in Escherichia coli—attenuation of singlet oxygen-mediated bacterial killing by carotenoids. FEBS Lett 484:280–284PubMedCrossRefGoogle Scholar
  30. Tian B, Wu Y, Sheng D, Zheng Z, Gao G, Hua Y (2004) Chemiluminescence assay for reactive oxygen species scavenging activities and inhibition on oxidative damage of DNA in Deinococcus radiodurans. Luminescence 19:78–84PubMedCrossRefGoogle Scholar
  31. Tian B, Xu Z, Sun Z, Lin J, Hua Y (2007) Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses. Biochim Biophys Acta 1770:902–911PubMedGoogle Scholar
  32. Trevithick-Sutton CC, Foote CS, Collins M, Trevithick JR (2006) The retinal carotenoids zeaxanthin and lutein scavenge superoxide and hydroxyl radicals: a chemiluminescence and ESR study. Mol Vis 12:1127–1135PubMedGoogle Scholar
  33. Umeno D, Tobias AV, Arnold FH (2005) Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev 69:51–78PubMedCrossRefGoogle Scholar
  34. Wei H, Cai Q, Rahn RO (1996) Inhibition of UV light- and Fenton reaction-induced oxidative DNA damage by the soybean isoflavone genistein. Carcinogenesis 17:73–77PubMedCrossRefGoogle Scholar
  35. White O, Eisen JA, Heidelberg JF, Hickey EK, Peterson JD, Dodson RJ, Haft DH, Gwinn ML, Nelson WC, Richardson DL, Moffat KS, Qin H, Jiang L, Pamphile W, Crosby M, Shen M, Vamathevan JJ, Lam P, McDonald L, Utterback T, Zalewski C, Makarova KS, Aravind L, Daly MJ, Minton KW, Fleischmann RD, Ketchum KA, Nelson KE, Salzberg S, Smith HO, Venter JC, Fraser CM (1999) Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286:1571–1577PubMedCrossRefGoogle Scholar
  36. Work E, Griffiths H (1968) Morphology and chemistry of cell walls of Micrococcus radiodurans. J Bacteriol 95:641–657PubMedGoogle Scholar
  37. Xu Z, Tian B, Sun Z, Lin J, Hua Y (2007) Identification and functional analysis of a phytoene desaturase gene from the extremely radioresistant bacterium Deinococcus radiodurans. Microbiology 153:1642–1652PubMedCrossRefGoogle Scholar
  38. Zhao BL, Li XJ, He RG, Cheng SJ, Xin WJ (1989) Scavenging effect of extracts of green tea and natural antioxidants on active oxygen radicals. Cell Biophys 14:175–185PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Lei Zhang
    • 1
  • Qiao Yang
    • 1
  • Xuesong Luo
    • 1
  • Chengxiang Fang
    • 1
  • Qiuju Zhang
    • 1
  • Yali Tang
    • 1
  1. 1.College of Life SciencesWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations