Archives of Microbiology

, Volume 188, Issue 4, pp 377–387 | Cite as

Identification and characterization of two Streptomyces davawensis riboflavin biosynthesis gene clusters

  • Simon Grill
  • Hiroyuki Yamaguchi
  • Helen Wagner
  • Laure Zwahlen
  • Ute Kusch
  • Matthias Mack
Original Paper

Abstract

In Streptomyces davawensis roseoflavin is synthesized from GTP and ribulose-5-phosphate through riboflavin. As a first step towards the molecular analysis of flavin metabolism in S. davawensis the genes involved in riboflavin biosynthesis were cloned by hybridization of heterologous probes to a genomic library on a high-density colony-array. The genes ribB (riboflavin synthase, α-chain; EC 2.5.1.9), ribM (putative membrane protein), ribA (bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2-butanone-4-phosphate synthase; EC 3.5.4.25) and ribH (lumazine synthase; EC 2.5.1.9) are organized in an operon-like cluster. Northern blot analysis of this cluster revealed two transcripts of 1.7 and 3.1 kb, respectively. The gene ribB was overexpressed in Escherichia coli. The specific riboflavin synthase activity in a cell-free extract of a recombinant strain was 0.246 nmol mg−1 min−1. Overexpression of ribM enhanced the transport of riboflavin in the corresponding recombinant E. coli strain. Furthermore, overexpression of ribM increased roseoflavin sensitivity of E. coli. On another subgenomic fragment a putative S. davawensisribG gene coding for the missing pyrimidine deaminase/reductase (EC 3.5.4.26 and EC 1.1.1.193) of the riboflavin biosynthetic pathway and ribY coding for a second (monofunctional) GTP cyclohydrolase II were identified.

Keywords

Riboflavin biosynthesis Streptomyces davawensis Roseoflavin 

References

  1. Bacher A, Baur R, Eggers U, Harders HD, Otto MK, Schnepple H (1980) Riboflavin synthases of Bacillus subtilis. Purification and properties. J Biol Chem 255:632–637PubMedGoogle Scholar
  2. Bacher A, Eberhardt S, Richter G (1996) Biosynthesis of riboflavin. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium. ASM Press, Washington, pp 657–664Google Scholar
  3. Bacher A, Eberhardt S, Fischer M, Kis K, Richter G (2000) Biosynthesis of vitamin B2 (riboflavin). Annu Rev Nutr 20:153–167PubMedCrossRefGoogle Scholar
  4. Bacher A et al (2001) Biosynthesis of riboflavin. Vitam Horm 61:1–49PubMedGoogle Scholar
  5. Bandrin SV, Beburov M, Rabinovich PM, Stepanov AI (1979) [Riboflavin auxotrophs of Escherichia coli]. Genetika 15:2063–2065PubMedGoogle Scholar
  6. Bentley SD et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147PubMedCrossRefGoogle Scholar
  7. Bereswill S, Hinkelmann S, Kist M, Sander A (1999) Molecular analysis of riboflavin synthesis genes in Bartonella henselae and use of the ribC gene for differentiation of Bartonella species by PCR. J Clin Microbiol 37:3159–3166PubMedGoogle Scholar
  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  9. Burgess CM, Slotboom DJ, Geertsma ER, Duurkens RH, Poolman B, van Sinderen D (2006) The riboflavin transporter RibU in Lactococcus lactis: molecular characterization of gene expression and the transport mechanism. J Bacteriol 188:2752–2760PubMedCrossRefGoogle Scholar
  10. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159PubMedCrossRefGoogle Scholar
  11. Eberhardt S, Richter G, Gimbel W, Werner T, Bacher A (1996) Cloning, sequencing, mapping and hyperexpression of the ribC gene coding for riboflavin synthase of Escherichia coli. Eur J Biochem 242:712–719PubMedCrossRefGoogle Scholar
  12. Eberhardt S, Korn S, Lottspeich F, Bacher A (1997) Biosynthesis of riboflavin: an unusual riboflavin synthase of Methanobacterium thermoautotrophicum. J Bacteriol 179:2938–2943PubMedGoogle Scholar
  13. Fassbinder F, Kist M, Bereswill S (2000) Structural and functional analysis of the riboflavin synthesis genes encoding GTP cyclohydrolase II (ribA), DHBP synthase (ribBA), riboflavin synthase (ribC), and riboflavin deaminase/reductase (ribD) from Helicobacter pylori strain P1. FEMS Microbiol Lett 191:191–197PubMedCrossRefGoogle Scholar
  14. Fischer M, Bacher A (2005) Biosynthesis of flavocoenzymes. Nat Prod Rep 22:324–350PubMedCrossRefGoogle Scholar
  15. Fuller TE, Mulks MH (1995) Characterization of Actinobacillus pleuropneumoniae riboflavin biosynthesis genes. J Bacteriol 177:7265–7270PubMedGoogle Scholar
  16. Gusarov II et al (1997) Riboflavin biosynthetic genes in Bacillus amyloliquefaciens: primary structure, organization and regulation of activity. Mol Biol (Mosk) 31:446–453Google Scholar
  17. Haase I, Mortl S, Kohler P, Bacher A, Fischer M (2003) Biosynthesis of riboflavin in archaea. 6,7-dimethyl-8-ribityllumazine synthase of Methanococcus jannaschii. Eur J Biochem 270:1025–1032PubMedCrossRefGoogle Scholar
  18. Hunkapiller MW, Hewick RM, Dreyer WJ, Hood LE (1983) High-sensitivity sequencing with a gas-phase sequenator. Methods Enzymol 91:399–413PubMedCrossRefGoogle Scholar
  19. Ikeda H et al (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531PubMedCrossRefGoogle Scholar
  20. Juri N, Kubo Y, Kasai S, Otani S, Kusunose M, Matsui K (1987) Formation of roseoflavin from 8-amino- and 8-methylamino-8-demethyl-d-riboflavin. J Biochem (Tokyo) 101:705–711Google Scholar
  21. Kieser T, Bibb M, Buttner M, Chater K, Hodwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, NorwichGoogle Scholar
  22. Kreneva RA et al (2000) [Study of the phenotypic occurrence of ura gene inactivation in Bacillus subtilis]. Genetika 36:1166–1168PubMedGoogle Scholar
  23. Lee CY, Szittner RB, Meighen EA (1991) The lux genes of the luminous bacterial symbiont, Photobacterium leiognathi, of the ponyfish. Nucleotide sequence, difference in gene organization, and high expression in mutant Escherichia coli. Eur J Biochem 201:161–167PubMedCrossRefGoogle Scholar
  24. Lee CY, Szittner RB, Miyamoto CM, Meighen EA (1993) The gene convergent to luxG in Vibrio fischeri codes for a protein related in sequence to RibG and deoxycytidylate deaminase. Biochim Biophys Acta 1143:337–339PubMedCrossRefGoogle Scholar
  25. Lee CY, O’Kane DJ, Meighen EA (1994) Riboflavin synthesis genes are linked with the lux operon of Photobacterium phosphoreum. J Bacteriol 176:2100–2104PubMedGoogle Scholar
  26. Matsui K, Juri N, Kubo Y, Kasai S (1979) Formation of roseoflavin from guanine through riboflavin. J Biochem (Tokyo) 86:167–175Google Scholar
  27. Otani S, Takatsu M, Nakano M, Kasai S, Miura R (1974) Letter: Roseoflavin, a new antimicrobial pigment from Streptomyces. J Antibiot (Tokyo) 27:86–87Google Scholar
  28. Perkins J, Pero J (2002) Biosynthesis of riboflavin, biotin, folic acid, and cobalamin. In: Sonenshein A, Hoch J, Losick R (eds) Bacillus subtilis and its closest relatives: from genes to cells. ASM Press, Washington, pp 271–286Google Scholar
  29. Richter G et al (1993) Biosynthesis of riboflavin: cloning, sequencing, mapping, and expression of the gene coding for GTP cyclohydrolase II in Escherichia coli. J Bacteriol 175:4045–4051PubMedGoogle Scholar
  30. Richter G et al (1997) Biosynthesis of riboflavin: characterization of the bifunctional deaminase-reductase of Escherichia coli and Bacillus subtilis. J Bacteriol 179:2022–2028PubMedGoogle Scholar
  31. Ritz H et al (2001) Biosynthesis of riboflavin: studies on the mechanism of GTP cyclohydrolase II. J Biol Chem 276:22273–22277PubMedCrossRefGoogle Scholar
  32. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  33. Sauer E, Merdanovic M, Mortimer AP, Bringmann G, Reidl J (2004) PnuC and the utilization of the nicotinamide riboside analog 3-aminopyridine in Haemophilus influenzae. Antimicrob Agents Chemother 48:4532–4541PubMedCrossRefGoogle Scholar
  34. Spoonamore JE, Dahlgran AL, Jacobsen NE, Bandarian V (2006) Evolution of new function in the GTP cyclohydrolase II proteins of Streptomyces coelicolor. Biochemistry 45:12144–12155PubMedCrossRefGoogle Scholar
  35. Strohl WR (1992) Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 20:961–974PubMedCrossRefGoogle Scholar
  36. Stüber D, Matile H, Garotta G (1990) System for high-level production in Escherichia coli and rapid purification of recombinant proteins: application to epitope mapping, preparation of antibodies, and structure–function analysis. Immunol Methods 4:121–152Google Scholar
  37. Vente A, Korn B, Zehetner G, Poustka A, Lehrach H (1999) Distribution and early development of microarray technology in Europe. Nat Genet 22:22PubMedCrossRefGoogle Scholar
  38. Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS (2002) Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res 30:3141–3151PubMedCrossRefGoogle Scholar
  39. Winkler WC, Cohen-Chalamish S, Breaker RR (2002) An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci USA 99:15908–15913PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Simon Grill
    • 1
  • Hiroyuki Yamaguchi
    • 1
  • Helen Wagner
    • 1
  • Laure Zwahlen
    • 1
  • Ute Kusch
    • 1
  • Matthias Mack
    • 1
  1. 1.Institute for Technical MicrobiologyMannheim University of Applied SciencesMannheimGermany

Personalised recommendations