Archives of Microbiology

, Volume 188, Issue 3, pp 289–297

Chlorobenzoate inhibits growth and induces stress proteins in the PCB-degrading bacterium Burkholderia xenovorans LB400

  • Paula Martínez
  • Loreine Agulló
  • Marcela Hernández
  • Michael Seeger
Original Paper

Abstract

Aerobic bacteria, such as Burkholderia xenovorans LB400, are able to degrade a wide range of polychlorobiphenyls (PCBs). Generally, these bacteria are not able to transform chlorobenzoates (CBAs), which accumulate during PCB degradation. In this study, the effects of CBAs on the growth, the morphology and the proteome of Burkholderiaxenovorans LB400 were analysed. 4-CBA and 2-CBA were observed to inhibit the growth of strain LB400 on glucose. Strain LB400 exposed to 4-CBA exhibited increased number and size of electron-dense granules in the cytoplasm, which could be polyphosphates. Two-dimensional (2-D) polyacrylamide gel electrophoresis was used to characterise the molecular response of strain LB400 to 4-CBA. This compound induced the enzymes BenD and CatA of benzoate and catechol catabolic pathways. The induction of molecular chaperones DnaK and HtpG by 4-CBA indicated that the exposure to this compound constitutes a stressful condition for this bacterium. Additionally, the induction of some Krebs cycle enzymes was observed, probably as response to cellular energy requirements. This study contributes to the knowledge on the effects of CBA on the PCB-degrader Burkholderia xenovorans LB400.

Keywords

Chlorobenzoate Proteome Burkholderia xenovorans Stress 

Abbreviations

CBAs

Chlorobenzoates

PCBs

Polychlorobiphenyls

2-D

Two-dimensional

DNP

2,4-Dinitrophenol

2,4-D

2,4-Dichlorophenoxyacetic acid

CFU

Colony-forming units

References

  1. Agulló L, Cámara B, Martínez P, Latorre V, Seeger M (2007) Response to (chloro)biphenyls of the polychlorobiphenyl-degrader Burkholderia xenovorans LB400 involves stress proteins also induced by heat shock and oxidative stress. FEMS Microbiol Lett 267:167–175PubMedCrossRefGoogle Scholar
  2. Barriault D, Lépine F, Mohammadi M, Milot S, Leberre N, Sylvestre M (2004) Revising the regiospecificity of Burkholderia xenovorans biphenyl dioxygenase toward 2,2′-dichlorobiphenyl and 2,3,2′,3′-tetrachlorobiphenyl. J Biol Chem 279:47489–47496PubMedCrossRefGoogle Scholar
  3. Bébien M, Lagniel G, Garin J, Touati D, Vermeglio A, Labarre J (2002) Involvement of superoxide dismutases in the response of Escherichia coli to selenium oxides. J Bacteriol 184:1556–1564PubMedCrossRefGoogle Scholar
  4. Bedard DL (1990) Bacterial transformation of polychlorinated biphenyls. In: Kamely D, Chakrabarty A, Omenn GS (eds) Biotechnology and biodegradation. Portfolio Publishing Co., The Woodlands, Texas, pp 369–388Google Scholar
  5. Blasco R, Wittich RM, Mallavarapu M, Timmis KN, Pieper DH (1995) From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. J Biol Chem 270:29229–29235PubMedCrossRefGoogle Scholar
  6. Caldas T, Laalami S, Richarme G (2000) Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2. J Biol Chem 275:855–860PubMedCrossRefGoogle Scholar
  7. Cámara B, Herrera C, González M, Couve E, Hofer B, Seeger M (2004) From PCBs to highly toxic metabolites by the biphenyl pathway. Environ Microbiol 6:842–850PubMedCrossRefGoogle Scholar
  8. Cases I, De Lorenzo V (2001) The black cat/white cat principle of signal integration in bacterial promoters. EMBO J 20:1–11PubMedCrossRefGoogle Scholar
  9. Chain P, Denef V, Konstantinidis K, Vergez L, Agulló L, Latorre Reyes V, Hauser L, Córdova M, Gómez L, González M, Land M, Lao V, Larimer F, LiPuma J, Mahenthiralingam E, Malfatti S, Marx C, Parnell J, Ramette A, Richardson P, Seeger M, Smith D, Spilker T, Sul W-J, Tsoi T, Ulrico L, Zhulin I, Tiedje J (2006). Burkholderia xenovorans LB400 harbors a multi-replicon, 9.7 M bp genome shaped for versatility. Proc Natl Acad Sci USA 113:15280–15287CrossRefGoogle Scholar
  10. Cho YS, Park SH, Kim CK, Oh KH (2000) Induction stress shock proteins DnaK and GroEL by phenoxyherbicide 2,4-D in Burkholderia sp. YK-2 isolated from rice field. Curr Microbiol 41:33–38PubMedCrossRefGoogle Scholar
  11. Denef VJ, Park J, Tsoi TV, Rouillard JM, Zhang H, Wibbenmeyyer JA, Verstraete W, Gulari E, Hashsham SA, Tiedje JM (2004) Biphenyl and benzoate metabolism in a genomic context: outlining genome-wide metabolic networks in Burkholderia xenovorans LB400. Appl Environ Microbiol 70:4961–4970PubMedCrossRefGoogle Scholar
  12. Denef VJ, Patrauchan MA, Florizone C, Park J, Tsoi TV, Verstraete W, Tiedje JM, Eltis LD (2005) Growth substrate- and phase-specific expression of biphenyl, benzoate and C1 metabolic pathways in Burkholderia xenovorans LB400. J Bacteriol 187:7996–8005PubMedCrossRefGoogle Scholar
  13. Duché O, Trémoulet F, Glaser P, Labadie J (2002) Salt stress proteins induced in Listeria monocytogenes. Appl Environ Microbiol 68:1491–1498PubMedCrossRefGoogle Scholar
  14. Gage DJ, Neidhardt FC (1993) Adaptation of Escherichia coli to the uncoupler of oxidative phosphorylation 2,4-dinitrophenol. J Bacteriol 175:7105–7108PubMedGoogle Scholar
  15. Haddock JD, Horton JR, Gibson DT (1995) Dihydroxylation and dechlorination of chlorinated biphenyls by purified biphenyl-2,3-dioxygenase from Pseudomonas sp. strain LB400. J Bacteriol 177:20–26PubMedGoogle Scholar
  16. Heim S, Lleo M, Bonato B, Guzman CA, Canepari P (2002) The viable but nonculturable state and starvation are different stress responses of Enterococcus faecalis, as determined by proteome analysis. J Bacteriol 184:6739–6745PubMedCrossRefGoogle Scholar
  17. Heipieper HJ, de Bont JAM (1994) Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes. Appl Environ Microbiol 60:4440–4444PubMedGoogle Scholar
  18. Kabelitz N, Santos PM, Heipieper HJ (2003) Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticus. FEMS Microbiol Lett 220:223–227PubMedCrossRefGoogle Scholar
  19. Kaschabek SR, Kasberg T, Müller D, Mars AE, Janssen DB, Reineke W (1998) Degradation of chloroaromatics: purification and characterization of a novel type of chlorocatechol 2,3-dioxygenase of Pseudomonas putida GJ31. J Bacteriol 180:296–302PubMedGoogle Scholar
  20. Kim S-II, Seung-Youl S, Kyung-Wook K, Eun-Mi H, Kye-Heon O (2003) Proteomic analysis of the benzoate degradation pathway in Acinetobacter sp. KS-1. Res Microbiol 154:697–703PubMedCrossRefGoogle Scholar
  21. Krayl M, Benndorf D, Loffhagen N, Babel W (2003) Use of proteomics and physiological characteristics to elucidate ecotoxic effects of methyl tert-butyl ether in Pseudomonas putida KT2440. Proteomics 3:1544–1552PubMedCrossRefGoogle Scholar
  22. Kulaev I, Kulakovskaya T (2000) Polyphosphate and phosphate pump. Annu Rev Microbiol 54:709–734PubMedCrossRefGoogle Scholar
  23. Lambert LA, Abshire K, Blankenhorn D, Slonczewski J (1997) Proteins induced in Escherichia coli by benzoic acid. J Bacteriol 179:7595–7599PubMedGoogle Scholar
  24. Leichert LI, Scharf C, Hecker M (2003) Global characterization of disulfide stress in Bacillus subtilis. J Bacteriol 185:1967–1975PubMedCrossRefGoogle Scholar
  25. Loffhagen N, Hartig C, Babel W (2003) Energization of Comamonas testosteroni ATCC 17454 for indicating toxic effects of chlorophenoxy herbicides. Arch Environ Contam Toxicol 45:317–323PubMedCrossRefGoogle Scholar
  26. Lupi CG, Colangelo T, Mason CA (1995) Two-dimensional gel electrophoresis analysis of the response of Pseudomonas putida KT244 to 2-chlorophenol. Appl Environ Microbiol 61:2863–2872PubMedGoogle Scholar
  27. Neidle EL, Ornston LN (1987) Benzoate and muconate, structurally dissimilar metabolites, induce expression of catA in Acinetobacter calcoaceticus. J Bacteriol 169:414–415PubMedGoogle Scholar
  28. Neidle EL, Shapiro MK, Ornston LN (1987) Cloning and expression in Escherichia coli of Acinetobacter calcoaceticus genes for benzoate degradation. J Bacteriol 169:5496–5503PubMedGoogle Scholar
  29. Pieper DH (2005) Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 67:170–191PubMedCrossRefGoogle Scholar
  30. Santos PM, Benndorf D, Sa-Correia I (2004) Insights into Pseudomonas putida KT2440 response to phenol-induce stress by quantitative proteomics. Proteomics 4:2640–2652PubMedCrossRefGoogle Scholar
  31. Seeger M, Timmis K, Hofer B (1995) Conversion of chlorobiphenyls into phenylhexadienoates and benzoates by the enzymes of the upper pathway for polychlorobiphenyl degradation encoded by the bph locus of Pseudomonas sp. strain LB400. Appl Environ Microbiol 61:2654–2658PubMedGoogle Scholar
  32. Seeger M, Osorio G, Jerez C (1996) Phosphorylation of GroEL, DnaK and other proteins from Thiobacillus ferrooxidans grown under different conditions. FEMS Microbiol Lett 138:129–134PubMedCrossRefGoogle Scholar
  33. Seeger M, Timmis KN, Hofer B (1997) Bacterial pathways for the degradation of polychlorinated biphenyl. Mar Chem 58:327–333CrossRefGoogle Scholar
  34. Seeger M, Zielinski M, Timmis K, Hofer B (1999) Regioespecificity of dioxygenation of di- to pentachlorobiphenyls and their degradation to chlorobenzoates by the bph-encoded catabolic pathway of Burkholderia sp. strain LB400. Appl Environ Microbiol 65:3614–3621PubMedGoogle Scholar
  35. Seeger M, Cámara B, Hofer B (2001) Dehalogenation, denitration, dehydroxylation and angular attack of substituted biphenyls and related compounds by a biphenyl dioxygenase. J Bacteriol 183:3548–3555PubMedCrossRefGoogle Scholar
  36. Seeger M, González M, Cámara B, Muñoz L, Ponce E, Mejías L, Mascayano C, Vásquez Y, Sepúlveda-Boza S (2003) Biotransformation of natural and synthetic isoflavonoids by two recombinant microbial enzymes. Appl Environ Microbiol 69:5045–5050PubMedCrossRefGoogle Scholar
  37. Segura A, Godoy P, van Dillewijn P, Hurtado A, Arroyo N, Santacruz S, Ramos JL (2005) Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. J Bacteriol 187:5937–5945PubMedCrossRefGoogle Scholar
  38. Sondossi M, Sylvestre M, Ahmad D (1992) Effects of chlorobenzoate transformation on the Pseudomonas testosteroni biphenyl and chlorobiphenyl degradation pathway. Appl Environ Microbiol 58:485–495PubMedGoogle Scholar
  39. Swanson CR (1969) The benzoic acid herbicides. In: Kearby PC, Kaufman DD (eds) Degradation of herbicides. Marcel Dekker, New York, pp 299–320Google Scholar
  40. Vrana B, Decorová K, Baláz S, Sevciková A (1996) Effect of chlorobenzoates on the degradation of polychlorinated biphenyls (PCB) by Pseudomonas stutzeri. J Microbiol Biotechnol 12:323–326CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Paula Martínez
    • 1
    • 2
  • Loreine Agulló
    • 1
  • Marcela Hernández
    • 1
  • Michael Seeger
    • 1
  1. 1.Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Millennium Nucleus of Microbial Ecology and Environmental Microbiology and BiotechnologyUniversidad Técnica Federico Santa MaríaValparaísoChile
  2. 2.Department of BioremediationHelmholtz Centre for Environmental Research-UFZLeipzigGermany

Personalised recommendations