Archives of Microbiology

, Volume 188, Issue 2, pp 199–204

Thiosulfate oxidation by a moderately thermophilic hydrogen-oxidizing bacterium, Hydrogenophilus thermoluteolus

  • Daisuke Miyake
  • Shin-ichi Ichiki
  • Miyako Tanabe
  • Takahiro Oda
  • Hisao Kuroda
  • Hirofumi Nishihara
  • Yoshihiro Sambongi
Short Communication

Abstract

The moderately thermophilic Betaproteobacterium, Hydrogenophilus thermoluteolus, not only oxidizes hydrogen, the principal electron donor for growth, but also sulfur compounds including thiosulfate, a process enabled by sox genes. A periplasmic extract of H. thermoluteolus showed significant thiosulfate oxidation activity. Ten genes apparently involved in thiosulfate oxidation (soxEFCDYZAXBH) were found on a 9.7-kb DNA fragment of the H. thermoluteolus chromosome. The proteins SoxAX, which represent c-type cytochromes, were co-purified from the cells of H. thermoluteolus; they enhanced the thiosulfate oxidation activity of the periplasmic extract when added to the latter.

Keywords

Hydrogenophilus thermoluteolus Thiosulfate oxidation Sox genes 

Abbreviations

Sox

Sulfur oxidation

PCR

Polymerase chain reaction

bp

Base pair(s)

References

  1. Appia-Ayme C, Little PJ, Matsumoto Y, Leech AP, Berks BC (2001) Cytochrome complex essential for photosynthetic oxidation of both thiosulfate and sulfide in Rhodovulum sulfidophilum. J Bacteriol 183:6107–6118PubMedCrossRefGoogle Scholar
  2. Bamford VA, Bruno S, Rasmussen T, Appia-Ayme C, Cheesman MR, Berks BC, Hemmings AM (2002) Structural basis for the oxidation of thiosulfate by a sulfur cycle enzyme. EMBO J 21:5599–5610PubMedCrossRefGoogle Scholar
  3. Bardischewsky F, Fischer J, Holler B, Friedrich CG (2006) SoxV transfers electrons to the periplasm of Paracoccus pantotrophus—an essential reaction for chemotrophic sulfur oxidation. Microbiology 152:465–472PubMedCrossRefGoogle Scholar
  4. Beller HR, Chain PS, Letain TE, Chakicherla A, Larimer FW, Richardson PM, Coleman MA, Wood AP, Kelly DP (2006) The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J Bacteriol 188:1473–1488PubMedCrossRefGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  6. Brune DC (1989) Sulfur oxidation by phototrophic bacteria. Biochim Biophys Acta 975:189–221PubMedCrossRefGoogle Scholar
  7. Dambe T, Quentmeier A, Rother D, Friedrich C, Scheidig AJ (2005) Structure of the cytochrome complex SoxXA of Paracoccus pantotrophus, a heme enzyme initiating chemotrophic sulfur oxidation. J Struct Biol 152:229–234PubMedCrossRefGoogle Scholar
  8. Friedrich CG, Quentmeier A, Bardischewsky F, Rother D, Kraft R, Kostka S, Prinz H (2000) Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. J Bacteriol 182:4677–4687PubMedCrossRefGoogle Scholar
  9. Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882PubMedCrossRefGoogle Scholar
  10. Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259PubMedCrossRefGoogle Scholar
  11. Goodhew CF, Brown KR, Pettigrew GW (1986) Haem staining in gels, a useful tool in the study of bacterial c-type cytochromes. Biochim Biophys Acta 852:288–294CrossRefGoogle Scholar
  12. Goto E, Kodama T, Minoda Y (1978) Growth and taxonomy of thermophilic hydrogen bacteria. Agri Biol Chem 42:1305–1308Google Scholar
  13. Guiral M, Tron P, Aubert C, Gloter A, Iobbi-Nivol C, Giudici-Orticoni MT (2005) A membrane-bound multienzyme, hydrogen-oxidizing, and sulfur-reducing complex from the hyperthermophilic bacterium Aquifex aeolicus. J Biol Chem 280:42004–42015PubMedCrossRefGoogle Scholar
  14. Hayashi NR, Ishida T, Yokota A, Kodama T, Igarashi Y (1999) Hydrogenophilus thermoluteolus gen. nov., sp. nov., a thermophilic, facultatively chemolithoautotrophic, hydrogen-oxidizing bacterium. Int J Syst Bacteriol 49:783–786PubMedCrossRefGoogle Scholar
  15. Hensen D, Sperling D, Trüper HG, Brune DC, Dahl C (2006) Thiosulfate oxidation in the phototrophic sulphur bacterium Allochromatium vinosum. Mol Microbiol 62:794–810PubMedCrossRefGoogle Scholar
  16. Ichiki S, Nakamura S, Ohkubo T, Kobayashi Y, Hasegawa J, Uchiyama S, Nishihara H, Mizuta K, Sambongi Y (2005) Cloning, expression, crystallization, and preliminary X-ray characterization of cytochrome c 552 from a moderate thermophilic bacterium, Hydrogenophilus thermoluteolus. Acta Cryst F61:395–398Google Scholar
  17. Kappler U, Aguey-Zinsou KF, Hanson GR, Bernhardt PV, McEwan AG (2004) Cytochrome c 551 from Starkeya novella: characterization, spectroscopic properties, and phylogeny of a diheme protein of the SoxAX family. J Biol Chem 279:6252–6260PubMedCrossRefGoogle Scholar
  18. Kelly DP, Wood AP (2005) Acidithiobacillus Kelly and Wood 2000, 513VP. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds), Bergey’s manual of systematic bacteriology. The Proteobacteria (Part B), vol 2, 2nd edn. Springer, New York, pp 60–62Google Scholar
  19. Kelly DP, Shergill JK, Lu WP, Wood AP (1997) Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Leeuwenhoek 71:95–107PubMedCrossRefGoogle Scholar
  20. Klarskov K, Verté F, Van Driessche G, Meyer TE, Cusanovich MA, Van Beeumen J (1998) The primary structure of soluble cytochrome c-551 from the phototrophic green sulfur bacterium Chlorobium limicola, strain Tassajara, reveals a novel c-type cytochrome. Biochemistry 37:10555–10562PubMedCrossRefGoogle Scholar
  21. Nishihara H (2005) Hydrogenovibrio Nishihara, Igarashi and Kodama 1991b, 132VP. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds), Bergey’s manual of systematic bacteriology. The Proteobacteria (Part B), vol 2, 2nd edn. Springer, New York, pp 188–189Google Scholar
  22. Reysenbach AL (2001) Phylum BI. Aquificae phy. nov. In: Boone DR, Castenholz RW, Garrity GM (eds), Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 359–367Google Scholar
  23. Rother D, Orawski G, Bardischewsky F, Friedrich CG (2005) SoxRS-mediated regulation of chemotrophic sulfur oxidation in Paracoccus pantotrophus. Microbiology 151:1707–1716PubMedCrossRefGoogle Scholar
  24. Siebert D, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087–1088PubMedCrossRefGoogle Scholar
  25. Stöhr R, Waberski A, Liesack W, Völker H, Wehmeyer U, Thomm M (2001a) Hydrogenophilus hirschii sp. nov., a novel thermophilic hydrogen-oxidizing beta-proteobacterium isolated from Yellowstone National Park. Int J Syst Evol Microbiol 51:481–488PubMedGoogle Scholar
  26. Stöhr R, Waberski A, Völker H, Tindall BJ, Thomm M (2001b) Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilus as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., comb. nov., in the phylum ‘Hydrogenobacter/Aquifex’. Int J Syst Evol Microbiol 51:1853–1862PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Daisuke Miyake
    • 1
  • Shin-ichi Ichiki
    • 1
  • Miyako Tanabe
    • 1
  • Takahiro Oda
    • 2
  • Hisao Kuroda
    • 2
  • Hirofumi Nishihara
    • 2
  • Yoshihiro Sambongi
    • 1
  1. 1.Graduate School of Biosphere ScienceHiroshima University, CREST of Japan Science and Technology CorporationHiroshimaJapan
  2. 2.Faculty of AgricultureIbaraki UniversityIbarakiJapan

Personalised recommendations