Archives of Microbiology

, Volume 188, Issue 1, pp 15–25 | Cite as

Diversity of Microcystis aeruginosa isolates (Chroococcales, Cyanobacteria) from East-African water bodies

  • Sigrid HaandeEmail author
  • Andreas Ballot
  • Thomas Rohrlack
  • Jutta Fastner
  • Claudia Wiedner
  • Bente Edvardsen
Original Paper


With exception of South Africa, very little is known about the presence and abundance of toxic cyanobacteria and cyanobacterial blooms on the African continent. The close proximity between society and nature, and the use of the sparse water resources as drinking water in large parts of Africa, lead to the recognition that more knowledge on toxic cyanobacterial blooms is of major importance. The bloom forming cyanobacterium Microcystis aeruginosa is known to produce cyclic heptatoxins (microcystins) which can be toxic to humans. In this study the morphological, genetic, and chemical characters of 24 strains of M. aeruginosa from several water bodies in Kenya and Uganda, some of them used as drinking water sources, were examined. The M. aeruginosa strains possessed different levels of diversity depending on characterisation method. Four morphotypes were identified based on the traditional morphological approach, 10 genotypes by DNA sequence comparison of the PC-IGS and ITS1 rDNA regions, and 10 chemotypes based on MALDI-TOF-MS oligopeptide analysis. Only 4 of the 24 isolated strains from East Africa were found to produce microcystins, while oligopeptides belonging to the aeruginosin and cyanopeptolin class were detected in most strains.


Microcystis aeruginosa Microcystin Morphology ITS1-rDNA PC-IGS Phylogeny Matrix-assisted laser desorption/ionization time-of-flight MALDI-TOF mass spectrometry ELISA 



We are grateful to Randi Skulberg, Hege Hansen, and Monika Degebrodt for excellent laboratory assistance and Kjetil Røberg for helpful assistance with phylogenetic analysis. We are grateful to Marcel Erhard (AnagnosTec, Luckenwalde) and Martin Welker (Technical University, Berlin) for use of databases and for providing reference PSD spectra. We would like to thank the Kenyan Ministry of Education Science and Technology for providing research permission (No. MOEST 13/001/31 C90) and the Uganda National Council for Science and Technology for providing research permit (No. UNCST-EC584). This study was funded by the Norwegian Research Council (No. 148839/730). We thank the two anonymous reviewers for helpful comments.


  1. Banker R, Carmeli S (1999) Inhibitors of Serine Proteases from a Waterbloom of the Cyanobacterium Microcystis sp. Tetrahedon 55:10835–10844CrossRefGoogle Scholar
  2. Bell SG, Codd GA (1994) Cyanobacterial toxins and human health. Rev Med Microbiol 5:256–264Google Scholar
  3. Bittencourt-Oliveira MC, Oliveira M, Bolch CJS (2001) Genetic variability of brazilian strains of the Microcystis aeruginosa complex (Cyanobacteria/Cyanophyceae) using the phycocyanin intergenic spacer and flanking regions (cpcBA). J Phycol 37:810–818CrossRefGoogle Scholar
  4. Bolch CJ, Blackburn SI, Jones GJ, Orr PT, Grewe PM (1997) Plasmid content and distribution in Australian isolates of Microcystis Kützing ex Lemmermann (Cyanobacteria: Chroococcales). Phycologia 36:6–11CrossRefGoogle Scholar
  5. Bootsma HA, Hecky RE (2003) A comparative introduction to the biology and limnology of the African Great Lakes. J Great Lakes Res 29:3–18CrossRefGoogle Scholar
  6. Boyer SL, Flechtner VR, Johansen JR (2001) Is the 16S–23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol 18:1057–1069PubMedGoogle Scholar
  7. Carmichael WW, Beasley V, Bunner DL, Eloff JN, Falconer I, Gorham P, Harada KI, Krishnamurthy T, Yu MJ, Moore RE, Rinehart K, Runnegar M, Skulberg OM, Watanabe M (1988) Naming of cyclic heptapeptide toxins of cyanobacteria (Blue–Green-Algae). Toxicon 26:971–973PubMedCrossRefGoogle Scholar
  8. Charmichael WW (1996) Toxic Microcystis and the environment. In: Watanabe MF, Harada K, Charmichael WW, Fujiki H (eds) Toxic Microcystis spp. CRC Press, Boca Raton, pp 13–34Google Scholar
  9. Christoffersen K (1996) Effect of microcystin on growth of single species and on mixed natural populations of heterotrophic nanoflagellates. Nat Toxins 4:215–220PubMedCrossRefGoogle Scholar
  10. Codd GA, Bell SG, Kaya K, Ward CJ, Beattie KA, Meatcalf JS (1999) Cyanobacterial toxins, exposure routes and human health. Eur J Phychol 34:405–415CrossRefGoogle Scholar
  11. Codd GA, Azevedo SMFO, Bagchi SN, Burch MD, Carmichael, WW, Harding WR, Kaya K, Utkilen HC (2005) CYANONET: a global network for Cyanobacterial Bloom and Toxin Risk Management. Initial situation assessment and recommendations. IHP-VI Technical Document in Hydrology N°76. UNESCO Working Series SC-2005/WS/55Google Scholar
  12. Dor I, Hornoff M (1985) Studies on Aphanothece halophytica fremy from a solar pond: comparison of two isolates on the basis of cell polymorphism and growth response to salinity, temperature and light conditions. Bot Mar 28:389–398CrossRefGoogle Scholar
  13. Fastner J, Erhard M, von Döhren H (2001) Determination of oligopeptide diversity within a natural population of Microcystis spp. (Cyanobacteria) by typing single colonies by matrix-assisted laser desorption ionization time of flight mass spectrometry. Appl Environ Microbiol 67:5069–5076PubMedCrossRefGoogle Scholar
  14. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  15. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  16. Humpage AR, Falconer IR (1999) Microcystin-LR and liver tumor promotion: effects on cytokinesis, ploidy, and apoptosis in cultured hepatocytes. Environ Toxicol 14:61–75CrossRefGoogle Scholar
  17. Iteman I, Rippka R, de Marsac NT, Herdman M (2000) Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria. Microbiology 146:1275–1286PubMedGoogle Scholar
  18. Janse I, Kardinaal WEA, Meima M, Fastner J, Visser PM, Zwart G (2004) Toxic and non-toxic Microcystis colonies can be differentiated on the basis of rRNA gene internal transcribed spacer diversity. Appl Environ Microbiol 70:3979–3987PubMedCrossRefGoogle Scholar
  19. Kato T, Watanabe MF, Watanabe M (1991) Allozyme divergence in Microcystis (Cyanophyceae) and its taxonomic inference. Algol Stud 64:129–140Google Scholar
  20. Komárek J (1985) Do all cyanophytes have a cosmopolitan distribution? Survey of the freshwater cyanophyte flora of Cuba. Algol Stud 38/39:359–386Google Scholar
  21. Komárek J (1991) A review of water-bloom forming Microcystis species, with regard to populations from Japan. Algol Stud 64:115–127Google Scholar
  22. Komárek J, Anagnostidis K (1999) Teil: Chroococcales. In: Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds) Cyanoprokaryota 1. Süwasserflora von Mitteleuropa. Gustav Fischer, Jena, GermanyGoogle Scholar
  23. Kotai J (1972) Instructions for preparation of modified nutrient solution Z8 for algae. Publication B-11/69. Norwegian Institute for Water Research, OsloGoogle Scholar
  24. Krüger GHJ, Elhoff JN, Pretorius JA (1981) Morphological changes in toxic and non-toxic Microcystis isolates at different irradiance levels. J Phycol 17:52–56CrossRefGoogle Scholar
  25. Krienitz L, Ballot A, Kotut K, Wiegand C, Putz S, Metcalf JS, Codd GA, Pflugmacher S (2003) Contribution of hot spring cyanobacteria to the mysterious deaths of Lesser Flamingos at Lake Bogoria, Kenya. FEMS Microbiol Ecol 2:141–148Google Scholar
  26. Kuiper-Goodman T, Falconer I, Fitzgerald J (1999) Human health aspects. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water. E & FN Spon, London, pp 113–153Google Scholar
  27. Namikoshi M, Rinehart KL (1996) Bioactive compounds produced by cyanobacteria. J Ind Microbiol Biotechnol 17:373–384CrossRefGoogle Scholar
  28. Neilan BA, Jacobs D, Goodman AE (1995) Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl Environ Microbiol 61:3875–3883PubMedGoogle Scholar
  29. Nishihara H, Miwa H, Watanabe M, Nagashima M, Yagi O, Takamura Y (1997) Random amplified polymorphic DNA (RAPD) analyses for discriminating genotypes of Microcystis cyanobacteria. Biosci Biotechnol Biochem 61:1067–1072PubMedGoogle Scholar
  30. Nylander JAA (2002) MrModeltest v1.0b. Program distributed by the author. Department of Systematic Zoology, Uppsala UniversityGoogle Scholar
  31. Ohtake A, Shirai M, Adia T, Mori N, Harada K, Matsuura K, Suzuki M, Nakano M (1989) Toxicity of Microcystis species isolated from natural blooms and purification of the toxin. Appl Environ Microbiol 55:3202–3207PubMedGoogle Scholar
  32. Olsen GJ, Woese CR (1993) Ribosomal-Rna—a key to phylogeny. Faseb J 1:113–123Google Scholar
  33. Otsuka S, Suda S, Li R, Watanabe M, Oyaizu H, Matsumoto S, Watanabe MM (1999) Phylogenetic relationship between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence. FEMS Microbiol Lett 172:15–21PubMedCrossRefGoogle Scholar
  34. Otsuka S, Suda S, Li R, Matsumoto S, Watanabe MM (2000) Morphological variability of colonies of Microcystis morphospecies in culture. J Gen Appl Microbiol 46:39–50PubMedCrossRefGoogle Scholar
  35. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  36. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of Cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  37. Saker ML, Fastner J, Dittmann E, Christiansen G, Vasconcelos VM (2005) Variation between strains of the cyanobacterium Microcystis aeruginosa isolated from a Portuguese river. J Appl Microbiol 4:749–757CrossRefGoogle Scholar
  38. Sambrook J, Fritch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, New York, vol 1–3Google Scholar
  39. Sanchis D, Padilla C, Del Campo FF, Quesada A, Sanz-Alferez S (2005) Phylogenetic and morphological analyses of Microcystis strains (Cyanophyta/Cyanobacteria) from a Spanish water reservoir. Nova Hedwigia 81:431–448CrossRefGoogle Scholar
  40. Swofford DL (1998) PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods) version 4.0. Sinauer Associates, SunderlandGoogle Scholar
  41. Tillett D, Parker DL, Neilan BA (2001) Detection of toxigenicity by a probe for the microcystin synthetase A gene (mcyA) of the cyanobacterial genus Microcystis: comparison of toxicities with 16S rRNA and phycocyanin operon (Phycocyanin intergenic spacer) phylogenies. Appl Environ Microbiol 76:2810–2818CrossRefGoogle Scholar
  42. Via-Ordorika L, Fastner J, Kurmayer R, Hisbergues M, Dittmann E, Komárek J, Erhard M Chorus I (2004) Distribution of microcystin-producing and non-microcystin-producing Microcystis sp. in European freshwater bodies. Detection of microcystins and microcystin genes in individual colonies. Syst Appl Microbiol 27:592–602PubMedCrossRefGoogle Scholar
  43. Welker M, Fastner J, Erhard M, von Döhren H (2002) Application of MALDI-TOF MS in cyanotoxin research. Environ Toxicol 17:367–374PubMedCrossRefGoogle Scholar
  44. Welker M, Brunke M, Preussel K, Lippert I, von Döhren H (2004) Diversity and distribution of Microcystis (Cyanobacteria) oligopeptide chemotypes from natural communities studied by single-colony mass spectrometry. Microbiology 150:1785–1796PubMedCrossRefGoogle Scholar
  45. Welker M, von Döhren H (2006) Cyanobacterial peptides—nature’s own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–563PubMedCrossRefGoogle Scholar
  46. Wiegand C, Peuthert A, Pflugmacher S, Carmeli S (2002) Effects of microcin SF608 and microcystin-LR, two cyanotobacterial compounds produced by Microcystis sp., on aquatic organisms. Environ Toxicol 17:400–406PubMedCrossRefGoogle Scholar
  47. WHO (1998) Guidelines for drinking-water quality, 2nd edn. Addendum to volume 2: health criteria and other supporting information. World Health Organization, GenevaGoogle Scholar
  48. Wilson AE, Sarnelle O, Neilan BA, Salmon TP, Gehringer MM, Hay ME (2005) Genetic variation of the bloom-forming cyanobacterium Microcystis aeruginosa within and among lakes: implications for harmful algal blooms. Appl Environ Microbiol 71:6126–6133PubMedCrossRefGoogle Scholar
  49. Yoshida M, Yoshida T, Takashima Y, Kondo R, Hiroishi S (2005) Genetic diversity of the toxic cyanobacterium Microcystis in Lake Mikata. Environ Toxicol 20:229–234PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Sigrid Haande
    • 1
    • 2
    Email author
  • Andreas Ballot
    • 3
  • Thomas Rohrlack
    • 1
  • Jutta Fastner
    • 4
  • Claudia Wiedner
    • 3
  • Bente Edvardsen
    • 1
    • 5
  1. 1.Norwegian Institute for Water ResearchOsloNorway
  2. 2.Department of BiologyUniversity of BergenBergenNorway
  3. 3.Department of Limnology of Stratified LakesLeibniz-Institute for Freshwater Ecology and Inland FisheriesStechlin-NeuglobsowGermany
  4. 4.Federal Environmental AgencyBerlinGermany
  5. 5.Department of BiologyUniversity of OsloOsloOsloNorway

Personalised recommendations