Advertisement

Archives of Microbiology

, Volume 187, Issue 5, pp 351–360 | Cite as

Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani

  • Marco Kai
  • Uta Effmert
  • Gabriele Berg
  • Birgit PiechullaEmail author
Original Paper

Abstract

Bacterial antagonists are bacteria that negatively affect the growth of other organisms. Many antagonists inhibit the growth of fungi by various mechanisms, e.g., secretion of lytic enzymes, siderophores and antibiotics. Such inhibition of fungal growth may indirectly support plant growth. Here, we demonstrate that small organic volatile compounds (VOCs) emitted from bacterial antagonists negatively influence the mycelial growth of the soil-borne phytopathogenic fungus Rhizoctonia solani Kühn. Strong inhibitions (99–80%) under the test conditions were observed with Stenotrophomonas maltophilia R3089, Serratia plymuthica HRO-C48, Stenotrophomonas rhizophila P69, Serratia odorifera 4Rx13, Pseudomonas trivialis 3Re2-7, S. plymuthica 3Re4-18 and Bacillus subtilis B2g. Pseudomonas fluorescens L13-6-12 and Burkholderia cepacia 1S18 achieved 30% growth reduction. The VOC profiles of these antagonists, obtained through headspace collection and analysis on GC-MS, show different compositions and complexities ranging from 1 to almost 30 compounds. Most volatiles are species-specific, but overlapping volatile patterns were found for Serratia spp. and Pseudomonas spp. Many of the bacterial VOCs could not be identified for lack of match with mass-spectra of volatiles in the databases.

Keywords

Bacterial antagonists Volatile organic compounds Serratia spp. Stenotrophomonas spp. Pseudomonas spp. Staphylococcus epidermidis Burkholderia cepacia Bacillis subtilis Rhizoctonia solani 

Notes

Acknowledgment

The authors thank Hella Goschke (University of Rostock) for cultivating the antagonists and R. solani, Prof. Dr. W. Francke (University of Hamburg) for structural investigations of the Serratia odorifera VOC, and Prof. Dr. E. Pichersky (University of Ann Arbor, Michigan, USA) for critical reading the manuscript.

References

  1. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827PubMedCrossRefGoogle Scholar
  2. Alstrom S (2001) Characteristics of bacteria from oil seed rape in relation to their biocontrol of activity against Verticillium dahliae. J Phytopathol 149:57–64CrossRefGoogle Scholar
  3. Anderson NA (1982) The genetics and pathology of Rhizoctonia solani. Annu Rev Phytopathol 20:329–374CrossRefGoogle Scholar
  4. Arimura G, Ozawa R, Kugimiya S, Takabayashi J, Bohlmann J (2004) Herbivore-induced defense response in a model legume. Two-spotted spider mites induce emission of (E)-β-ocimene and transcript accumulation of (E)-β-ocimene synthase in Lotus japonicus. Plant Physiol 135:1976–1983PubMedCrossRefGoogle Scholar
  5. Aström B, Gerhardson B (1988) Differential reactions of wheat and pea genotypes to root inoculations with growth-affecting rhizobacteria. Plant Soil 109:263–269CrossRefGoogle Scholar
  6. Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32PubMedCrossRefGoogle Scholar
  7. Bais HP, Weir TL, Perry GR, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266PubMedCrossRefGoogle Scholar
  8. Berg G, Ballin G (1994) Bacterial antagonists to Verticillium dahliae. J Phytopathol 141:99–110Google Scholar
  9. Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338PubMedCrossRefGoogle Scholar
  10. Berg G, Krechel A, Ditz M, Faupel A, Ulrich A, Hallmann J (2005) Comparison of endophytic and ectophytic potato-associated bacterial communities and their antagonistic activity against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229PubMedCrossRefGoogle Scholar
  11. Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350PubMedCrossRefGoogle Scholar
  12. Borg-Karlson AK, Englund FO, Unelius CR (1994) Dimethyl oligosulphide, major volatile released from Sauromatum guttatum and Phallus impudicus. Phytochemistry 35:2:889–892CrossRefGoogle Scholar
  13. Bouwmeester HJ, Matusova R, Sun ZK, Beale MH (2003) Secondary metabolite signalling in host-parasitic plant interactions. Curr Opin Plant Biol 6:358–364PubMedCrossRefGoogle Scholar
  14. Cane DE, Watt RM (2003) Expression and mechanistic analysis of a germacradienol synthase from Streptomyces coelicolor implicated in geosmin biosynthesis. Proc Natl Acad Sci USA 100:1547–1551PubMedCrossRefGoogle Scholar
  15. Chaurasia B, Pandey A, Palni LMS, Trivedi P, Kumar B, Colvin N (2005) Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol Res 160:75–81PubMedCrossRefGoogle Scholar
  16. Chen F, Ro DK, Petri J, Gershenzon J, Bohlmann J, Pichersky E, Tholl D (2004) Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monterpene 1,8-cineole. Plant Physiol 135:1956–1966PubMedCrossRefGoogle Scholar
  17. Cook RJ, Tomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim DS (1995) Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci USA 92:4197–4201Google Scholar
  18. Dainty RH, Edwards RA, Hibbard CM, Marnewick JJ (1989) Volatile compounds associated with microbial growth on normal and high pH beef stored at chill temperature. J Appl Bacteriol 66:281–289PubMedGoogle Scholar
  19. Denton M, Kerr KG (1998) Microbiological and clinical aspects of infections associated with Stenotrophomonas maltophilia. Clin Microbiol Rev 1:7–80Google Scholar
  20. Dickschat JS, Martens R, Brinkhoff T, Simon M, Schulz S (2005) Volatiles released by a Streptomyces species isolated from the North Sea. Chem Biodivers 2:837–865PubMedCrossRefGoogle Scholar
  21. Etschmann MMW, Bluemke W, Sell D, Schrader J (2002) Biotechnological production of 2-phenylethanol. Appl Microbiol Biotechnol 59:1–8PubMedCrossRefGoogle Scholar
  22. Faltin F, Lottmann J, Grosch R, Berg G (2004) Strategy to select and assess antagonistic bacteria for biological control of Rhizoctonia solani Kühn. Can J Microbiol 50:811–820PubMedCrossRefGoogle Scholar
  23. Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles. Biocontrol 37:955–964Google Scholar
  24. Fiddaman PJ, Rossall S (1994) Effect of substrate on the production of antifungal volatiles from Bacillus subtilis. J Appl Bacteriol 76:395–405PubMedGoogle Scholar
  25. Gershenzon J, Kreis W (1999) Biochemistry of terpenoids: monoterpenes, sespuiterpenes, diterpenes, sterols, cardiac glycosides and steroid saponins. In: Wink M (ed) Biochemistry of plant secondary metabolism, annual plant reviews. Academic, Sheffield, pp 222–280Google Scholar
  26. Grosch R, Faltin F, Lottmann J, Kofoet A, Berg G (2005) Effectiveness of three antagonistic bacterial isolates to suppress Rhizoctonia solani Kühn on lettuce and potato. Can J Microbiol 51:345–353PubMedCrossRefGoogle Scholar
  27. Gupta AM, Gopal KVB, Tilak R (2000) Mechanism of plant growth promotion by rhizobacteria. Ind J Exp Biol 38:856–862Google Scholar
  28. Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100:1541–1546PubMedCrossRefGoogle Scholar
  29. Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 10:1–13Google Scholar
  30. Handelsman J, Stabb EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855–1869PubMedCrossRefGoogle Scholar
  31. Ingram LO, Buttke TM (1984) Effects of alcohols on microorganisms. Adv Microb Physiol 25:253–300PubMedCrossRefGoogle Scholar
  32. Jakobi M, Winkelmann G, Kaiser D, Kempter C, Jung G, Berg G, Bahl H (1996) Maltophilin: a new antifungal compound produced by Stenotrophomonas maltophilia R3089. J Antibiot 49:1101–1104PubMedGoogle Scholar
  33. Kalbe C, Marten P, Berg G (1996) Members of the genus Serratia as beneficial rhizobacteria of oilseed rape. Microbiol Res 151:4433–4400Google Scholar
  34. Krechel A, Faupel A, Hallmann J, Ulrich A, Berg G (2002) Potato-associated bacteria and their antagonistic potential towards plant pathogenic fungi and the plant parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can J Microbiol 48:772–786PubMedCrossRefGoogle Scholar
  35. Kurze S, Bahl H, Dahl R, Berg G (2001) Biological control of fungal strawberry diseases by Serratia plymuthica HRO-C48. Plant Dis 85:529–534Google Scholar
  36. Lottmann J, Berg G (2001) Phenotypic and genotypic characterization of antagonistic bacteria associated with roots of transgenic and nontransgenic potato plants. Microbiol Res 156:75–82PubMedCrossRefGoogle Scholar
  37. Lucchini JJ, Bonnaveiro N, Cremieux A, le Goffic F (1993) Mechanism of bactericidal action of phenylethyl alcohol in Escherichia coli. Curr Microbiol 27:295–300CrossRefGoogle Scholar
  38. Marten P, Smalla K, Berg G (2000) Genotypic and phenotypic differentiation of antifungal biocontrol strains belonging to Bacillus subtilis. J Appl Microbiol 89:463–473PubMedCrossRefGoogle Scholar
  39. Minkwitz A, Berg G (2001) Comparison of antifungal activities and 16S ribosomal DNA sequences of clinical and environmental isolates of Stenotrophomonas maltophilia. J Clin Microbiol 39:139–145PubMedCrossRefGoogle Scholar
  40. Opelt K, Berg G (2004) Diversity and antagonistic potential of bacteria associated with byrophytes from nutrient poor habitats of the Baltic Sea Coast. Appl Environ Microbiol 70:6569–6579PubMedCrossRefGoogle Scholar
  41. Pare PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–331PubMedCrossRefGoogle Scholar
  42. Piechulla B, Pott MB (2003) Plant scents—mediator of inter- and intraorganismic communication. Planta 217:687–689PubMedCrossRefGoogle Scholar
  43. Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–47PubMedCrossRefGoogle Scholar
  44. Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J (2005) Recruitment of entomophathogenic nematodes by insect-damaged maize roots. Nature 434:732–737PubMedCrossRefGoogle Scholar
  45. Ryu CM, Farag MA, Hu CH, Reddy MS, Wie HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. PNAS 100:4927–4932PubMedCrossRefGoogle Scholar
  46. Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026PubMedCrossRefGoogle Scholar
  47. Schöller CEG, Gürtler H, Petersen R, Molin S, Wilkins K (2002) Volatile metabolites from Actinomycetes. J Agric Food Chem 50:2615–2621PubMedCrossRefGoogle Scholar
  48. Sneh B, Jabaji-Hare S, Neate SM, Dijst G (1996) Rhizoctonia species: taxonomy, molecular biology, ecology; pathology and disease control. Kluwer, DordrechtGoogle Scholar
  49. Steeghs M, Bais HP, Gouwe JD, Goldan P, Kuster W, Northway M, Fall R, Vivanco JM (2004) Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol 135:47–58PubMedCrossRefGoogle Scholar
  50. Stotzky G, Schenk S (1976) Volatile organic compounds and microorganisms. CRC Crit Rev Microbiol 4:333–382PubMedGoogle Scholar
  51. Walker TS, Bais HP, Grotewold E, Vivanco MJ (2003) Update on root exudation and rhizosphere biology. Plant Physiol 132:44–51PubMedCrossRefGoogle Scholar
  52. Weller DM, Raaijmakers JM, Gardener BB, Tomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–48PubMedCrossRefGoogle Scholar
  53. Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81:357–364PubMedCrossRefGoogle Scholar
  54. Whipps JM (2001) Microbial interaction and biocontrol in the rhizosphere. J Exp Bot 52:487–511PubMedGoogle Scholar
  55. Wolf A, Fritze A, Hagemann M, Berg G (2002) Stenotrophomonas rhizophila sp. Nov., a novel plant associated bacterium with antifungal properties. Int J Syst Evol Microbiol 52:1937–1944PubMedCrossRefGoogle Scholar
  56. Zhang YQ, Ren SX, Li HL, Wang YX, Fu G, Yang J, Qin ZQ, Miao YG, Wang WY, Chen RS, Shen Y, Chen Z, Yuan ZH, Zhao GP, Qu D, Danchin A, Wen YM (2003) Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol Microbiol 49:1577–1593PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Marco Kai
    • 1
  • Uta Effmert
    • 1
  • Gabriele Berg
    • 2
  • Birgit Piechulla
    • 1
    Email author
  1. 1.Department of Biological SciencesUniversity of RostockRostockGermany
  2. 2.Environmental BiotechnologyGraz Technical UniversityGrazAustria

Personalised recommendations