Advertisement

Archives of Microbiology

, Volume 187, Issue 2, pp 101–115 | Cite as

Mutation in cyaA in Enterobacter cloacae decreases cucumber root colonization

  • Daniel P. RobertsEmail author
  • Laurie F. McKenna
  • Xiaojia Hu
  • Scott M. Lohrke
  • Hye Suk Kong
  • Jorge T. de Souza
  • C. Jacyn Baker
  • John Lydon
Original Paper

Abstract

Strains of Enterobacter cloacae show promise as biological control agents for Pythium ultimum-induced damping-off on cucumber and other crops. Enterobacter cloacae M59 is a mini-Tn5 Km transposon mutant of strain 501R3. Populations of M59 were significantly lower on cucumber roots and decreased much more rapidly than those of strain 501R3 with increasing distance from the soil line. Strain M59 was decreased or deficient in growth and chemotaxis on most individual compounds detected in cucumber root exudate and on a synthetic cucumber root exudate medium. Strain M59 was also slightly less acid resistant than strain 501R3. Molecular characterization of strain M59 demonstrated that mini-Tn5 Km was inserted in cyaA, which encodes adenylate cyclase. Adenylate cyclase catalyzes the formation of cAMP and cAMP levels in cell lysates from strain M59 were approximately 2% those of strain 501R3. Addition of exogenous, nonphysiological concentrations of cAMP to strain M59 restored growth (1 mM) and chemotaxis (5 mM) on synthetic cucumber root exudate and increased cucumber seedling colonization (5 mM) by this strain without serving as a source of reduced carbon, nitrogen, or phosphorous. These results demonstrate a role for cyaA in colonization of cucumber roots by Enterobacter cloacae.

Keywords

Biological control Colonization Cyclic AMP cyaA Rhizosphere 

Notes

Acknowledgments

We thank Dr. Li Wei, Ernest Williams, and Ricky Brathwaite for assistance with certain experiments. We also thank Dr. Steve Rehner, USDA-ARS, Beltsville, MD, for assistance in sequencing cyaA.

References

  1. Adler J (1973) A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol 74:77–91PubMedGoogle Scholar
  2. Aiba H (1985) Transcription of the Escherichia coli adenylate cyclase gene is negatively regulated by cAMP–cAMP receptor protein. J Biol Chem 260:3063–3070PubMedGoogle Scholar
  3. Aiba H, Kawaura R, Yamamoto E, Yamada H, Takegawa K, Mizuno T (1998) Isolation and characterization of high-osmolarity-sensitive mutants of fission yeast. J Bacteriol 180:5038–5043PubMedGoogle Scholar
  4. Alper MD, Ames BN (1978) Transport of antibiotics and metabolite analogs by systems under cyclic AMP control: positive selection of Salmonella typhimurium cya and crp mutants. J Bacteriol 133:149–157PubMedGoogle Scholar
  5. Altschul SF, Madden TL, Schaffer AA, Zhang J, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  6. Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350PubMedCrossRefGoogle Scholar
  7. Botsford JL, Harman JG (1992) Cyclic AMP in prokaryotes. Microbiol Rev 56:100–122PubMedGoogle Scholar
  8. Bull CT, Weller DM, Thomashow LS (1991) Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2–79. Phytopathology 81:954–959Google Scholar
  9. Bull CT, Duffy B, Voisard C, Défago G, Keel C, Haas D (2001) Characterization of spontaneous gacS and gacA regulatory mutants of Pseudomonas fluorescens biocontrol strain CHA0. Ant Leeuw 79:327–336CrossRefGoogle Scholar
  10. Castanie-Cornet M-P, Penfound TA, Smith D, Elliot JF, Foster JW (1999) Control of acid resistance in Escherichia coli. J Bacteriol 181:3525–3535PubMedGoogle Scholar
  11. Chancey ST, Wood DW, Pierson EA, Pierson LS III (2002) Survival of GacS/GacA mutants of the biological control bacterium Pseudomonas aureofaciens 30–84 in the wheat rhizosphere. Appl Environ Microbiol 68:3308–3314PubMedCrossRefGoogle Scholar
  12. Chin-A-Wong TFC, Bloemberg GV, Mulders IHM, Dekkers LC, Lugtenberg BJJ (2000) Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Molec Plant-Microbe Interact 13:1340–1345Google Scholar
  13. Ciria R, Abreu-Goodger C, Morett E, Merino E (2004) GeConT: gene context analysis. Bioinformatics 20:2307–2308PubMedCrossRefGoogle Scholar
  14. Crasnier M, Danchin A (1990) Characterization of Escherichia coli mutants with altered regulation. J Gen Microbiol 136:1825–1832PubMedGoogle Scholar
  15. Crasnier M, Dumay V, Danchin A (1994) The catalytic domain of Escherichia coli K-12 adenylate cyclase as revealed by deletion analysis of the cya gene. Mol Gen Genet 241:409–416Google Scholar
  16. Curl EA, Truelove B (1986) The rhizosphere, Springer, Berlin Heidelberg New York, pp 288Google Scholar
  17. Danchin A (1993) Phylogeny of adenylyl cyclases. Adv Sec Mess Phosphoprot Res 27:109–162Google Scholar
  18. Dekkers LC, Bloemendaal CJP, de Weger LA, Wijffelman CA, Spaink HP, Lugtenberg BJJ (1998) A two-component system plays an important role in the root-colonizing ability of Pseudomonas fluorescens strain WCS365. Mol Plant-Microbe Interact 11:45–56PubMedGoogle Scholar
  19. Delaney JM (1990) A cya deletion mutant of Escherichia coli develops thermotolerance but does not exhibit a heat-shock response. Genet Res, Camb 55:1–6Google Scholar
  20. de Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Molec Plant-Microbe Interact 15:1173–1180Google Scholar
  21. Ferenci T (1999) Regulation by nutrient limitation. Curr Opin Microbiol 2:208–213PubMedCrossRefGoogle Scholar
  22. Gosset G, Zhang Z, Nayyar S, Cuevas WA, Saier MH Jr (2004) Transcriptome analysis of Crp-dependent catabolite control of gene expression in Escherichia coli. J Bacteriol 186:3516–3524PubMedCrossRefGoogle Scholar
  23. Gutierrez-Rios RM, Rosenblueth DA, Loza JA, Huerta AM, Glasner JD, Blattner FR, Collado-Vides J (2003) Regulatory network of Escherichia coli: consistency between literature knowledge and microarray profiles. Genome Res 13:2435–2443PubMedCrossRefGoogle Scholar
  24. Hadar Y, Harman GE, Taylor AG, Horton JM (1983) Effects of pregermination of pea and cucumber seeds and of seed treatment with Enterobacter cloacae on rots caused by Pythium spp. Phytopathology 73:1322–1325CrossRefGoogle Scholar
  25. Hawes MC, Smith LY, Howarth AJ (1988) Agrobacterium tumefaciens mutants deficient in chemotaxis to root exudates. Molec Plant-Microbe Interact 1:182–186Google Scholar
  26. Heeb S, Haas D (2001) Regulatory roles of the GacS/GacA two-component system in plant-associated and other Gram-negative bacteria. Molec Plant-Microbe Interact 12:1351–1363Google Scholar
  27. Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the σs subunit of RNA polymerase in Escherichia coli. Microbiol Mol Biol Rev 66:373–395PubMedCrossRefGoogle Scholar
  28. Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480CrossRefGoogle Scholar
  29. Kaiser AD, Hogness DS (1960) The transformation of Escherichia coli with deoxyribonucleic acid isolated from the bacteriophage λdg. J Molec Biol 2:392–415PubMedCrossRefGoogle Scholar
  30. Keseler IM, Collado-Vides J, Gama-Castro S, Ingraham J, Paley S, Paulsen IT, Peralta-Gil M, Karp PD (2005) EcoCyc:a comprehensive database resource for Escherichia coli. Nuc Acids Res 33:D334–D337CrossRefGoogle Scholar
  31. Kimura Y, Mishima Y, Nakano H, Takegawa K (2002) An adenylyl cyclase, CyaA, of Myxococcus xanthus functions in signal transduction during osmotic stress. J Bacteriol 184:3578–3585PubMedCrossRefGoogle Scholar
  32. Kolb A, Busby S, Buc H, Garges S, Adhya S (1993) Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 62:749–795PubMedCrossRefGoogle Scholar
  33. Kreig NR, Gerhardt P (1981) Solid culture. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds) Manual of methods for general bacteriology. American Society for Microbiology Press, Washington, pp 143–150Google Scholar
  34. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Molec Plant-Microbe Interact 17:6–15Google Scholar
  35. Lee-Rivera I, Gomez-Eichelmann MC (1994) Escherichia coli cells with mutations in the gene for adenylate cyclase (cya) exhibit a heat shock response. FEMS Microbiol Lett 121:35–38PubMedCrossRefGoogle Scholar
  36. Lohrke SM, Dery PD, Li W, Reedy R, Kobayashi DY, Roberts DP (2002) Mutation in rpiA in Enterobacter cloacae decreases seed and root colonization and biocontrol of damping-off caused by Pythium ultimum on cucumber. Molec Plant-Microbe Interact 15:817–825Google Scholar
  37. Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490PubMedCrossRefGoogle Scholar
  38. Ma Z, Richard H, Foster JW (2003) pH-dependent modulation of cyclic AMP levels and GadW-dependent repression of RpoS affect synthesis of the GadX regulator and Escherichia coli acid resistance. J Bacteriol 185:6852–6859PubMedCrossRefGoogle Scholar
  39. Martínez-Granero F, Capdevila S, Sanchez -Contreras M, Martin M, Rivilla R (2005) Two site-specific recombinases are implicated in phenotypic variation and competitive rhizosphere colonization in Pseudomonas fluorescens. Microbiol 151:975–983CrossRefGoogle Scholar
  40. Mazzola M, Cook RJ, Thomashow LS, Weller DM, Pierson LS (1992) Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol 58:2616–2624PubMedGoogle Scholar
  41. Mishra RNS-P, Nair S, Sopory SK, Reddy MK (2002) Directional genome walking using PCR. Biotechniques 33:830–834PubMedGoogle Scholar
  42. Natsch A, Keel C, Pfirter HA, Haas D, Défago G (1994) Contribution of the global regulator gene gacA to persistence and dissemination of Pseudomonas fluorescens biocontrol strain CHA0 introduced into soil microcosms. Appl Environ Microbiol 60:2553–2560PubMedGoogle Scholar
  43. Nelson EB (1988) Biological control of Pythium seed rot and preemergence damping-off of cotton with Enterobacter cloacae and Erwinia herbicola applied as seed treatments. Plant Dis 72:140–142Google Scholar
  44. Nguyen ND, Gottfert M, Singh M, Klingmüller W (1983) Nif-hybrids of Enterobacter cloacae: selection for nif-gene integration with nif-plasmids containing the Mu transposon. Mol Gen Genet 192:439–443CrossRefGoogle Scholar
  45. Postma PW, Lengeler JS, Jacobson GR (1996) Phosphoenolpyruvate:carbohydrate phosphotransferase systems. In: Neidhardt FC, Curtiss R, III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella. Cellular and molecular biology, vol 1. American Society for Microbiology Press, Washington, pp 1149–1174Google Scholar
  46. Rainey PB (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1:243–257PubMedCrossRefGoogle Scholar
  47. Rephaeli AW, Saier MH Jr (1976) Effects of crp mutations on adenosine 3’,5’-monophosphate metabolism in Salmonella typhimurium. J Bacteriol 127:120–127PubMedGoogle Scholar
  48. Roberts DP, Sheets CJ, Hartung JS (1992) Evidence for proliferation of Enterobacter cloacae on carbohydrates in cucumber and pea spermosphere. Can J Microbiol 38:1128–1134CrossRefGoogle Scholar
  49. Roberts DP, Marty AM, Dery PD, Yucel I, Hartung JS (1996) Amino acids as reduced carbon sources for Enterobacter cloacae during colonization of the spermospheres of crop plants. Soil Biol Biochem 28:1015–1020CrossRefGoogle Scholar
  50. Roberts DP, Dery PD, Hebbar PK, Mao W, Lumsden RD (1997) Biological control of damping-off of cucumber caused by Pythium ultimum with a root-colonization-deficient strain of Escherichia coli. J Phytopathol 145:387–392Google Scholar
  51. Roberts DP, Dery PD, Yucel I, Buyer JS, Holtman MA, Kobayashi DY (1999) Role of pfkA and general carbohydrate catabolism in seed colonization by Enterobacter cloacae. Appl Environ Microbiol 65:2513–2519PubMedGoogle Scholar
  52. Roberts DP, Dery PD, Yucel I, Buyer JS (2000) Importance of pfkA for rapid growth of Enterobacter cloacae during colonization of crop seeds. Appl Environ Microbiol 66:87–91PubMedCrossRefGoogle Scholar
  53. Roberts DP, Lohrke SM, Meyer SLF, Buyer JS, Bowers JH, Baker CJ, Li W, de Souza JT, Lewis JA, Chung S (2005) Biocontrol agents applied individually and in combination for suppression of soilborne diseases of cucumber. Crop Prot 24:141–155CrossRefGoogle Scholar
  54. Saier MH Jr (1996) Cyclic AMP-independent catabolite repression bacteria. FEMS Microbiol Lett 138:97–103PubMedCrossRefGoogle Scholar
  55. Saier MH Jr, Ramseier TM, Reizer J (1996) Regulation of carbon utilization. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella. Cellular and molecular biology, vol 1. American Society for Microbiology Press, Washington, pp 1325–1343Google Scholar
  56. Sakamoto Y, Furukawa S, Ogihara H, Yamasaki M (2003) Fosmidomycin resistance in adenylate cyclase deficient (cya) mutants of Escherichia coli. Biosci Biotechnol Biochem 67:2030–2033PubMedCrossRefGoogle Scholar
  57. Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  58. Tang W-J, Gilman AG (1992) Adenylyl cyclases. Cell 70:869–872PubMedCrossRefGoogle Scholar
  59. Thompson JE, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res 22:4673–4680PubMedCrossRefGoogle Scholar
  60. Trotot P, Sismeiro O, Vivarjs C, Glaser P, Bresson-Roy A, Danchin A (1996) Comparative analysis of the cya locus in enterobacteria and related Gram-negative facultative anaerobes. Biochimie 78:277–287PubMedCrossRefGoogle Scholar
  61. Tsuruoka T, Yamada Y (1975) Characterization of spontaneous fosfomycin (phosphonomycin)-resistant cells of Escherichia coli B in vitro. J Antibiot 28:906–911PubMedGoogle Scholar
  62. Vogel HJ, Bonner DM (1956) Acetylornithinase of Escherichia coli: Partial purification and some properties. J Biol Chem 218:97–106PubMedGoogle Scholar
  63. Vogler AP, Lengeler JW (1987) Indirect role of adenylate cyclase and cyclic AMP in chemotaxis to phosphotransferase system carbohydrates in Escherichia coli K-12. J Bacteriol 169:593–599PubMedGoogle Scholar
  64. Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R (2005) Genome-wide analysis of the general stress response network in Escherichia coli: σs-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187:1591–1603PubMedCrossRefGoogle Scholar
  65. Whistler CA, Corbell NA, Sarniguet A, Ream W, Loper JE (1998) The two-component regulators of GacS and GacA influence accumulation of the stationary-phase sigma factor σ s and the stress response in Psuedomonas fluorescens Pf-5. J Bacteriol 180:6635–6641PubMedGoogle Scholar
  66. Zhang Z, Gosset G, Barabote R, Gonzalez CS, Cuevas WA, Saier MH Jr (2005) Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli. J Bacteriol 187:980–990PubMedCrossRefGoogle Scholar
  67. Zheng D, Constantinidou C, Hobman JL, Minchin SD (2004) Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nuc Acids Res 32:5874–5893CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Daniel P. Roberts
    • 1
    Email author
  • Laurie F. McKenna
    • 1
  • Xiaojia Hu
    • 2
  • Scott M. Lohrke
    • 1
    • 5
  • Hye Suk Kong
    • 1
    • 6
  • Jorge T. de Souza
    • 3
    • 7
  • C. Jacyn Baker
    • 4
  • John Lydon
    • 1
  1. 1.Sustainable Agricultural Systems LaboratoryUSDA-Agricultural Research ServiceBeltsvilleUSA
  2. 2.Oil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanPeople’s Republic of China
  3. 3.Wye Research and Education CenterUniversity of MarylandQueenstownUSA
  4. 4.Molecular Plant Pathology LaboratoryUSDA – Agricultural Research ServiceBeltsvilleUSA
  5. 5.Naval Health Research Center, Environmental Health Effects LaboratoryGeo-Centers, Inc.Wright-Patterson Air Force BaseUSA
  6. 6.Laboratory of Methods DevelopmentCBER, FDARockvilleUSA
  7. 7.CEPLAC/CEPEC/SEFITRodovia Ilheus-ItabunaBrazil

Personalised recommendations