Archives of Microbiology

, Volume 186, Issue 6, pp 475–483 | Cite as

The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties

  • Valérie Leclère
  • Romain Marti
  • Max Béchet
  • Patrick Fickers
  • Philippe Jacques
Original Paper


The colonizing behaviour and the pellicle formation of Bacillus subtilis strains producing different families of lipopeptides were evaluated under several cultural conditions. The pattern of lipopeptides produced determined the architecture of the colony on a swarming medium as well as the flotation and the thickness of the pellicle formed at the air/liquid interface. The overproduction of mycosubtilin, a lipopeptide of the iturin family, led to increased spreading but had no effect on pellicle formation. A physico-chemical approach was developed to gain an insight into the mode of action of the biosurfactants facilitating the colonization. A relationship between surface tension of the culture medium and spreading of a lipopeptide non-producing strain, B. subtilis 168, was established. Goniometry was used to highlight the modification of the in situ wettability in the area where spreading was enhanced. On a solid medium, co-cultures of a surfactin producing with other strains showed a diffusion ring of the surfactin around the colony. This ring characterized by a higher wettability favoured the propagation of other colonies.


Bacillus subtilis Spreading Swarming Surfactin Mycosubtilin Surface tension Wettability 



This work received financial supports from the Université des Sciences et Technologies de Lille, the Région Nord-Pas-de-Calais and the Fonds Européen pour le Développement de la Recherche. We are particularly grateful to Dr Christine Faille (INRA, Villeneuve d’Ascq, France) for allowing and explaining the use of the goniometer. P. Fickers was a recipient of a Post-Doc grant from the Université des Sciences et Technologies de Lille.


  1. Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319PubMedCrossRefGoogle Scholar
  2. Bonmatin JM, Laprévoté O, Peypoux F (2003) Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity–structure relationships to design new bioactive agents. Comb Chem High Throughput Screen 6:541–556PubMedGoogle Scholar
  3. Branda SS, Gonzalez-Pastor JE, Ben Yehuda S, Losick R, Kolter R (2001) Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA 98:11621–11626PubMedCrossRefGoogle Scholar
  4. Calvio C, Celandroni F, Ghelardi E, Amati G, Salvetti S, Cecilian F, Galizzi A, Senesi S. (2005) Swarming differentiation and swimming motility in Bacillus subtilis are controlled by swrA, a newly identified dicistronic operon. J Bacteriol 187:5356–5366PubMedCrossRefGoogle Scholar
  5. Carrillo C, Teruel JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta 1611:91–97PubMedCrossRefGoogle Scholar
  6. Connelly MB, Young GA, Sloma A (2004) Extracellular proteolytic activity plays a central role in swarming motility in Bacillus subtilis. J Bacteriol 186:4159–4167PubMedCrossRefGoogle Scholar
  7. Corona-Izquierdo FP, Membrillo-Hernandez J (2002) Biofilm formation in Escherichia coli is affected by 3-(N-morpholino)propane sulfonate (MOPS). Res Microbiol 153:181–185PubMedCrossRefGoogle Scholar
  8. Costerton JW (1995) Overview of microbial biofilms. J Ind Microbiol 15:137–140PubMedCrossRefGoogle Scholar
  9. Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867PubMedCrossRefGoogle Scholar
  10. Deleu M, Razafindralambo H, Popineau Y, Jacques P, Thonart P, Paquot M (1999) Interfacial and emulsifying properties of lipopeptides from Bacillus subtilis. Colloids Surf A 152:3–10CrossRefGoogle Scholar
  11. Dixit M, Murudkar CS, Rao KK (2002) Epr is transcribed from a final sigmaD promoter and is involved in swarming of Bacillus subtilis. J Bacteriol 184:596–599PubMedCrossRefGoogle Scholar
  12. Fall R, Kinsinger RF, Wheeler KA (2004) A simple method to isolate biofilm-forming Bacillus subtilis and related species from plant roots. Syst Appl Microbiol 27:372–379PubMedCrossRefGoogle Scholar
  13. Fraser GM, Hughes C (1999) Swarming motility. Curr Op Microbiol 2:630–635CrossRefGoogle Scholar
  14. Hbid C (1996) Contribution à l’étude de la relation entre la structure des lipopeptides de Bacillus subtilis et leurs activités hémolytique et antifongique. Thesis from Liège University, BelgiumGoogle Scholar
  15. Henrichsen J (1972) Bacterial surface translocation: a survey and a classification. Bacteriol Rev 36:478–503PubMedGoogle Scholar
  16. Hofemeister J, Conrad B, Adler B, Hofemeister B, Feesche J, Kucheryava N, Steinborn G, Franke P, Grammel N, Zwintscher A, Leenders F, Hitzeroth G, Vater J (2004) Genetic analysis of the biosynthesis of non-ribosomal peptide- and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol Genet Genomics 272:363–378PubMedCrossRefGoogle Scholar
  17. Julkowska D, Obuchowski M, Holland IB, Séror SJ (2004) Branched swarming patterns on a synthetic medium formed by wild-type Bacillus subtilis strain 3610: detection of different cellular morphologies and constellations of cells as the complex architecture develops. Microbiology 150:1839–1849PubMedCrossRefGoogle Scholar
  18. Julkowska D, Obuchowski M, Holland IB, Séror SJ (2005) Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium. J Bacteriol 187:65–76PubMedCrossRefGoogle Scholar
  19. Kearns DB, Losick R (2003) Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49:581–590PubMedCrossRefGoogle Scholar
  20. Kearns DB, Chu F, Rudner R, Losick R (2004) Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility. Mol Microbiol 52:357–369PubMedCrossRefGoogle Scholar
  21. Kinsinger RF, Shirk MC, Fall R (2003) Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J Bacteriol 185:5627–5631PubMedCrossRefGoogle Scholar
  22. Landy M, Warren GH, Rosenman SB, Colio LG (1948) Bacillomycin—an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc Soc Exp Biol Med 67:539–541Google Scholar
  23. Leclère V, Béchet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584PubMedCrossRefGoogle Scholar
  24. Leenders F, Stein TH, Kablitz B, Franke P, Vater J (1999) Rapid typing of Bacillus subtilis strains by their secondary metabolites using matrix-assisted laser desorption/ionisation mass spectroscopy in intact cells. Rapid Commun Mass Spectrom 13:943–949CrossRefGoogle Scholar
  25. Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87:151–174PubMedCrossRefGoogle Scholar
  26. Matsuyama T, Nakagawa Y (1996) Bacterial wetting agents working in colonization of bacteria on surface environments. Colloids Surf B 7:207–214CrossRefGoogle Scholar
  27. Mendelson NH, Salhi B (1996) Patterns of reporter gene expression in the phase diagram of Bacillus subtilis colony forms. J Bacteriol 178:1980–1989PubMedGoogle Scholar
  28. Ohgiwari M, Matsushita M, Matsyama T (1992) Morphological changes in growth phenomena of bacterial colony patterns. J Phys Soc Jpn 61:816–822CrossRefGoogle Scholar
  29. Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P (2005) Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol 69:29–38PubMedCrossRefGoogle Scholar
  30. Paik SH, Chakicherla A, Hansen JN (1998) Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of sublancin 168, a novel antibiotic produced by Bacillus subtilis 168. J Biol Chem 273:23134–23142PubMedCrossRefGoogle Scholar
  31. Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563PubMedCrossRefGoogle Scholar
  32. Schneider J, Taraz K, Budzikiewicz H, Deleu M, Thonart P, Jacques P (1999) The structure of two fengycins from Bacillus subtilis S499. Z Naturforsch [C] 54:859–866Google Scholar
  33. Senesi S, Ghelardi E, Celandroni F, Salvetti S, Parisio E, Galizzi A (2004) Surface-associated flagellum formation and swarming differentiation in Bacillus subtilis are controlled by the ifm locus. J Bacteriol 186:1158–1164PubMedCrossRefGoogle Scholar
  34. Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Valérie Leclère
    • 1
  • Romain Marti
    • 1
  • Max Béchet
    • 1
  • Patrick Fickers
    • 1
  • Philippe Jacques
    • 1
  1. 1.ProBioGEM, Laboratoire des Procédés Biologiques, Génie Enzymatique et Microbien, Polytech’Lille, Avenue Paul LangevinUniversité des Sciences & Technologies de LilleVilleneuve d’Ascq CedexFrance

Personalised recommendations