Archives of Microbiology

, Volume 185, Issue 6, pp 459–469 | Cite as

Oenococcus oeni preference for peptides: qualitative and quantitative analysis of nitrogen assimilation

  • Fabienne Remize
  • Aurélie Gaudin
  • Yu Kong
  • Jean Guzzo
  • Hervé Alexandre
  • Sibylle Krieger
  • Michèle Guilloux-Benatier
Original Paper

Abstract

Optimization of malolactic fermentation in wine depends mainly on better understanding of nitrogen nutritional requirements of Oenococcus oeni. Four widely used starter strains and the reference ATCC BAA-1163 strain were grown in media containing different N sources: free amino acids, oligopeptides (0.5–10 kDa) or polypeptides (> 10 kDa). Amino acid auxotrophies were determined by the single omission technique. The tested strains were indifferent to only two to four amino acids and two of the starter strains appeared to be particularly demanding. Nitrogen consumption was investigated and a significant level of nitrogen was consumed by O. oeni only in the free amino acid medium. In media containing complex nitrogen sources, a global balance above 5 mg N l−1 was enough to ensure biomass formation of all tested strains. Moreover, for all strains, bacterial growth yield was higher in the presence of nitrogen from peptides than that from free amino acids. However, no direct relationship between the bacterial growth level and the amount of nitrogen metabolized could be established. These findings were discussed in relation to the physiology of wine malolactic bacteria.

Keywords

Lactic acid bacteria Oenococcus Wine Metabolism Nitrogen Peptide Amino acid 

Abbreviations

MLF

Malolactic fermentation

LAB

Lactic acid bacteria

References

  1. Alexandre H, Heintz D, Chassagne D, Guilloux-Benatier M, Charpentier C, Feuillat M (2001) Protease A activity and nitrogen fractions released during alcoholic fermentation and autolysis in enological conditions. J Ind Microbiol Biotechnol 26:235–240CrossRefPubMedGoogle Scholar
  2. Alexandre H, Costello PJ, Remize F, Guzzo J, Guilloux-Benatier M (2004) Saccharomyces cerevisiae-Oenococcus oeni interactions in wine: current knowledge and perspectives. Int J Food Microbiol 93:141–154CrossRefPubMedGoogle Scholar
  3. Aredes Fernandez P, Saguir F, Manca de Nadra MC (2003) Effect of amino acids and peptides on growth of Pediococcus pentosaceus from wine. Lat Am Appl Res 33:225–229Google Scholar
  4. Aredes Fernandez PA, Saguir FM, Manca de Nadra MC (2004) Effect of dipeptides on the growth of Oenococcus oeni in synthetic medium deprived of amino acids. Curr Microbiol 49:361–365CrossRefPubMedGoogle Scholar
  5. Barre P, Blondin B, Dequin S, Feuillat M, Sablayrolles JM, Salmon JM (1998) La levure de fermentation alcoolique. In: Flanzy C (ed) Oenologie: fondements scientifiques et technologiques. Tec & Doc, Lavoisier, Paris, pp 414–495Google Scholar
  6. Benthin S, Villadsen J (1996) Amino acid utilization by Lactococcus lactis subsp. cremoris FD1 during growth on yeast extract or casein peptone. J Appl Bacteriol 80:65–72Google Scholar
  7. van Boven A, Konings WN (1986) The uptake of peptides by microorganisms. Neth Milk Dairy J 40:117–127Google Scholar
  8. Britz TJ, Tracey RP (1990) The combination effect of pH, SO2, ethanol and temperature on the growth of Leuconostoc oenos. J Appl Bacteriol 68:23–31Google Scholar
  9. Cavin J, Prevost H, Lin J, Schmitt P, Divies C (1989) Medium for screening Leuconostoc oenos strains defective in malolactic fermentation. Appl Environ Microbiol 55:751–753PubMedGoogle Scholar
  10. Charbonnel P, Lamarque M, Piard J, Gilbert C, Juillard V, Atlan D (2003) Diversity of oligopeptide transport specificity in Lactococcus lactis species. A tool to unravel the role of OppA in uptake specificity. J Biol Chem 278:14832–14840CrossRefPubMedGoogle Scholar
  11. Crouigneau AA, Feuillat M, Guilloux-Benatier M (2000) Influence of some factors on autolysis of Oenococcus oeni. Vitis 39:167–171Google Scholar
  12. Dulau L, Ortiz-Julien A, Trioli G (2002) Method for active dry yeast rehydration, and rehydration medium. WO02101024, FranceGoogle Scholar
  13. Farias ME, Manca de Nadra MC (2000) Purification and partial characterization of Oenococcus oeni exoprotease. FEMS Microbiol Lett 185:263–266CrossRefPubMedGoogle Scholar
  14. Feuillat M, Guilloux-Benatier M, Gerbaux V (1985) Essais d’activation de la fermentation malolactique dans les vins. Sci Aliments 5:103–122Google Scholar
  15. Feuillat M (2001) New possible enological adjuvants of yeast origin. Bull OIV 74:753–771Google Scholar
  16. Foucaud C, Hemme D, Desmazeaud M (2001) Peptide utilization by Lactococcus lactis and Leuconostoc mesenteroides. Lett Appl Microbiol 32:20–25CrossRefPubMedGoogle Scholar
  17. Fourcassie P, Makaga-Kabinda-Massard A, Belarbi A, Maujean A (1992) Growth, d-glucose utilization and malolactic fermentation by Leuconostoc oenos strains in 18 media deficient in one amino acid. J Appl Bacteriol 73:489–496Google Scholar
  18. Garvie E (1967) The growth factor and amino acid requirements of species of the genus Leuconostoc, including Leuconostoc paramesenteroides (sp.nov.) and Leuconostoc oenos. J Gen Microbiol 48:439–447PubMedGoogle Scholar
  19. Gaudreau H, Champagne C, Conway J, Degré R (1999) Effect of ultrafiltration of yeast extracts on their ability to promote lactic acid bacteria growth. Can J Microbiol 45:891–897CrossRefPubMedGoogle Scholar
  20. Gomes AMP, Malcata FX, Claver FAM (1998) Growth enhancement of Bifidobacterium lactis Bo and Lactobacillus acidophilus Ki by milk hydrolyzates. J Dairy Sci 81:2817–2825PubMedCrossRefGoogle Scholar
  21. Goni DT, Azpilicueta CA (1999) Use of nitrogen compounds in spontaneous and inoculated wine fermentations. J Agr Food Chem 47:4018–4024CrossRefGoogle Scholar
  22. Guilloux-Benatier M, Feuillat M, Gerbaux V (1985) Contribution à l’étude de la dégradation de l’acide L-malique par les bactéries lactiques isolées du vin: effet stimulant des autolysats de levures. Vitis 24:59–74Google Scholar
  23. Guilloux-Benatier M, Guerreau J, Feuillat M (1995) Influence of initial colloid content on yeast macromolecule production and on the metabolism of wine microorganisms. Am J Enol Vitic 46(4):486–492Google Scholar
  24. Guilloux-Benatier M, Chassagne D (2003) Comparison of components released by fermented or active dried yeasts after aging on lees in a model wine. J Agr Food Chem 51:746–751CrossRefGoogle Scholar
  25. Guzzo J, Jobin M-P, Divies C (1998) Increase of sulfite tolerance in Oenococcus oeni by means of acidic adaptation. FEMS Microbiol Lett 160:43–47CrossRefGoogle Scholar
  26. Hebert EM, Raya RR, De Giori GS (2000) Nutritional requirements and nitrogen-dependent regulation of proteinase activity of Lactobacillus helveticus CRL 1062. Appl Environ Microbiol 66:5316–5321CrossRefPubMedGoogle Scholar
  27. Hugenholtz J, Dijkstra M, Veldkamp M (1987) Amino acid limited growth of starter cultures in milk. FEMS Microbiol Lett 45:191–198CrossRefGoogle Scholar
  28. Juillard V, Le Bars D, Kunji ER, Konings WN, Gripon JC, Richard J (1995) Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk. Appl Environ Microbiol 61:3024–3030PubMedGoogle Scholar
  29. Konings WN, Poolman B, Driessen AJ (1989) Bioenergetics and solute transport in lactococci. Crit Rev Microbiol 16:419–476PubMedGoogle Scholar
  30. Konings WN, Poolman B, van Veen HW (1994) Solute transport and energy transduction in bacteria. Antonie Van Leeuwenhoek 65:369–380CrossRefPubMedGoogle Scholar
  31. Kunji ER, Mierau I, Hagting A, Poolman B, Konings WN (1996) The proteolytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek 70:187–221CrossRefPubMedGoogle Scholar
  32. Lamarque M, Charbonnel P, Aubel D, Piard JC, Atlan D, Juillard V (2004) A multifunction ABC transporter (Opt) contributes to diversity of peptide uptake specificity within the genus Lactococcus. J Bacteriol 186:6492–6500CrossRefPubMedGoogle Scholar
  33. Lonvaud-Funel A, Desens C, Joyeux A (1985) Stimulation de la fermentation malolactique par l’addition au vin d’enveloppes cellulaires de levure et différents adjuvants de nature polysaccharidique et azotée. Conn Vigne Vin 4:229–240Google Scholar
  34. Lonvaud-Funel A (1999) Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie Van Leeuwenhoek 76:317–331CrossRefPubMedGoogle Scholar
  35. Loubière P, Novak L, Cocaign-bousquet M, Lindley ND (1996) Besoins nutritionnels des bactéries lactiques: interactions des flux de carbone et d’azote. Lait 76:5–12CrossRefGoogle Scholar
  36. Maicas S, Natividad A, Ferrer S, Pardo I (2000) Malolactic fermentation in wine with high densities of non-proliferating Oenococcus oeni. World J Microbiol Biotechnol 16:805–810CrossRefGoogle Scholar
  37. Maicas S (2001) The use of alternative technologies to develop malolactic fermentation in wine. Appl Microbiol Biotechnol 56:35–39CrossRefPubMedGoogle Scholar
  38. Manca de Nadra MC, Farias ME, Moreno-Arribas MV, Pueyo E, Polo MC (1997) Proteolytic activity of Leuconostoc oenos. Effect on proteins and polypeptides from white wine. FEMS Microbiol Lett 150:135–139CrossRefGoogle Scholar
  39. Manca de Nadra MC, Farias ME, Moreno-Arribas V, Pueyo E, Polo MC (1999) A proteolytic effect of Oenococcus oeni on the nitrogenous macromolecular fraction of red wine. FEMS Microbiol Lett 174:41–47CrossRefGoogle Scholar
  40. Martinez-Rodriguez AJ, Carrascosa AV, Martin-Alvarez PJ, Moreno-Arribas V, Polo MC (2002) Influence of the yeast strain on the changes of the amino acids, peptides and proteins during sparkling wine production by the traditional method. J Ind Microbiol Biotechnol 29:314–322CrossRefPubMedGoogle Scholar
  41. Mauricio JC, Valero E, Millan C, Ortega JM (2001) Changes in nitrogen compounds in must and wine during fermentation and biological aging by flour yeasts. J Agric Food Chem 49:3310–3315CrossRefPubMedGoogle Scholar
  42. Mills DA, Rawsthorne H, Parker C, Tamir D, Makarova K (2005) Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS Microbiol Rev 29:465–475CrossRefPubMedGoogle Scholar
  43. Morishita T, Deguchi Y, Yajima M, Sakurai T, Yura T (1981) Multiple nutritional requirements of lactobacilli: genetic lesions affecting amino acid biosynthetic pathways. J Bacteriol 148:64–71PubMedGoogle Scholar
  44. van Niel H, Hahn-Hägerdal B (1999) Nutrient requirements of lactococci in defined growth media. Appl Microbiol Biotechnol 52:617–627CrossRefGoogle Scholar
  45. Novak L, Cocaign-Bousquet M, Lindley N, Loubiere P (1997) Metabolism and energetics of Lactococcus lactis during growth in complex or synthetic media. Appl Environ Microbiol 63:2665–2670PubMedGoogle Scholar
  46. Pellerin P, Lebrun R (2001) Vers une meilleure maîtrise de la fermentation alcoolique par addition au moût d’un bio-régulateur spécifique : Impact sur la vitesse de fermentation et sur les caractéristiques du vin. La revue des oenologues 101:13–16Google Scholar
  47. Remize F, Augagneur Y, Guilloux-Benatier M, Guzzo J (2005) Effect of nitrogen limitation and nature of the feed upon Oenococcus oeni metabolism and extracellular protein production. J Appl Microbiol 98:652–661CrossRefPubMedGoogle Scholar
  48. Saguir FM, Manca de Nadra MC (2002) Effect of l-malic and citric acids metabolism on the essential amino acid requirements for Oenococcus oeni growth. J Appl Microbiol 93:295–301CrossRefPubMedGoogle Scholar
  49. Selby Smith J, Hillier A, Lees G (1975) The nature of the stimulation of the growth of Streptococcus lactis by yeast extract. J Dairy Res 42:123–138PubMedCrossRefGoogle Scholar
  50. Siezen R (1999) Multi-domain, cell-envelope proteinases of lactic acid bacteria. Antonie Van Leeuwenhoek 76:139–155CrossRefPubMedGoogle Scholar
  51. Smid EJ, Plapp R, Konings WN (1989) Peptide uptake is essential for growth of Lactococcus lactis on the milk protein casein. J Bacteriol 171:6135–6140PubMedGoogle Scholar
  52. Tonon T, Lonvaud-Funel A (2000) Metabolism of arginine and its positive effect on growth and revival of Oenococcus oeni. J Appl Microbiol 89:526–531CrossRefPubMedGoogle Scholar
  53. Tourdot-Marechal R, Fortier LC, Guzzo J, Lee B, Divies C (1999) Acid sensitivity of neomycin-resistant mutants of Oenococcus oeni: a relationship between reduction of ATPase activity and lack of malolactic activity. FEMS Microbiol Lett 178:319–326CrossRefPubMedGoogle Scholar
  54. Trioli G (1996) Some studies on Fermaid. Vitic Enol Sci 51:204–209Google Scholar
  55. Tynkkynen S et al (1993) Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis. J Bacteriol 175:7523–7532PubMedGoogle Scholar
  56. Vasserot Y, Dion C, Bonnet E, Maujean A, Jeandet P (2001) A study into the role of l-aspartic acid on the metabolism of l-malic acid and d-glucose by Oenococcus oeni. J Appl Microbiol 90:380–387CrossRefPubMedGoogle Scholar
  57. Versari A, Parpinello G, Cattaneo M (1999) Leuconostoc oenos and malolactic fermentation in wine: a review. J Ind Microbiol Biotechnol 23:447–455CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Fabienne Remize
    • 1
  • Aurélie Gaudin
    • 1
  • Yu Kong
    • 1
  • Jean Guzzo
    • 1
  • Hervé Alexandre
    • 1
  • Sibylle Krieger
    • 2
  • Michèle Guilloux-Benatier
    • 1
  1. 1.Laboratoire de Microbiologie UMR uB/INRA 1232Université de BourgogneDijonFrance
  2. 2.Lallemand SASBlagnac CedexFrance

Personalised recommendations