Advertisement

Archives of Microbiology

, 185:393 | Cite as

The complete mitochondrial genome of the entomopathogenic fungus Metarhizium anisopliae var. anisopliae: gene order and trn gene clusters reveal a common evolutionary course for all Sordariomycetes, while intergenic regions show variation

  • Dimitri V. Ghikas
  • Vassili N. Kouvelis
  • Milton A. Typas
Original Paper

Abstract

The mitochondrial genome (mtDNA) of the entomopathogenic fungus Metarhizium anisopliae var. anisopliae, with a total size of 24,673 bp, was one of the smallest known mtDNAs of Pezizomycotina. It contained the 14 typical genes coding for proteins related to oxidative phosphorylation, the two rRNA genes, a single intron that harbored an intronic ORF coding for a putative ribosomal protein (rps) within the large rRNA gene (rnl), and a set of 24 tRNA genes which recognized codons for all amino acids, except proline and valine. Gene order comparison with all known mtDNAs of Sordariomycetes illustrated a highly conserved genome organization for all the protein- and rRNA-coding genes, as well as three clusters of tRNA genes. By considering all mitochondrial essential protein-coding genes as one unit a phylogenetic study of these small genomes strongly supported the common evolutionary course of Sordariomycetes (100% bootstrap support) and highlighted the advantages of analyzing small genomes (mtDNA) over single genes. In addition, comparative analysis of three intergenic regions demonstrated sequence variability that can be exploited for intra- and inter-specific identification of Metarhizium.

Keywords

Mitochondrial genome Gene order trn gene cluster Metarhizium anisopliae Phylogenetic relationships Intergenic regions Identification 

Abbreviations

mt

Mitochondrial

Notes

Acknowledgements

The authors wish to acknowledge the support of the European Commission, Quality of Life and Management of Living Resources Programme (QoL), Key Action 1 on Food, Nutrition and Health QLK1–CT–2001–01391 (RAFBCA).

Supplementary material

203_2006_104_MOESM1_ESM.doc (68 kb)
Supplementary material 1
203_2006_104_MOESM2_ESM.doc (240 kb)
Supplementary material 2

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipaman TJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Bagga S, Hu G, Screen SE, St. Leger RJ (2004) Reconstructing the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae. Gene 324:159–169. DOI 10.1016/j.gene.2003.09.031Google Scholar
  3. Berbee ML (2001) The phylogeny of plant and animal pathogens in the Ascomycota. Physiol Mol Plant Pathol 59:165–187. DOI 10.1006/pmpp.2001.0355Google Scholar
  4. Bertrand H (2000) Role of mitochondrial DNA in the senescence and hypovirulence of fungi and potential for plant disease control. Ann Rev Phytopathol 38:397–422. DOI 10.1146/annurev.phyto.38.1.397Google Scholar
  5. Bidochka MJ (2001) Monitoring the fate of biobontrol fungi. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents. CABI Publishing, Walingford, pp 193–218Google Scholar
  6. Bidochka MJ, Small C-LN, Spironello M (2005) Recombination within sympatric cryptic species of the insect pathogenic fungus Metarhizium anisopliae. Environ Microbiol 7:1361–1368. DOI 10.1111/j.1462-5822.2005.00823.xGoogle Scholar
  7. Bullerwell CE, Burger G, Lang F (2000) A novel motif for identifying Rps3 homologs in fungal mitochondrial genomes. TIBS 25:363–365. DOI 10.1016/S0968-0004(00)01612-1Google Scholar
  8. Burger G, Gray MW, Lang BF (2003) Mitochondrial genomes: anything goes. Trends Genet 19:709–716. DOI 10.1016/j.tig.2003.10.012Google Scholar
  9. Butt TM, Jackson CW, Magan N (2001) Introduction—fungal biological control agents: progress, problems and potential. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents. CABI Publishing, Walingford, pp 1–8Google Scholar
  10. Cambell A, Mrazek J, Karlin S (1999) Genome signature comparisons among prokaryote, plasmid, and mitochondrial DNA. Proc Natl Acad Sci USA 96:9184–9189CrossRefGoogle Scholar
  11. Clark-Walker GD (1992) Evolution of mitochondrial genomes in fungi. Int Rev Cytol 141:89–127PubMedCrossRefGoogle Scholar
  12. Clarkson JM, Charnley KA (1996) New insights into the mechanisms of fungal pathogenesis in insects. Trends Microbiol 4:197–203. DOI 10.1016/0966-842X(96)10022-6Google Scholar
  13. Colleaux L, D’ Auriol L, Dujon B (1988) Recognition and cleavage site of the intron-encoded omega transposase. Proc Natl Acad Sci USA 85:6022–6026PubMedCrossRefGoogle Scholar
  14. Driver F, Milner RJ, Truemann JWH (2000) A taxonomic revision of Metarhizium based on a phylogenetic analysis of rDNA sequence data. Mycol Res 104:134–150CrossRefGoogle Scholar
  15. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  16. Felsenstein J (2002) PHYLIP (Phylogeny Inference Package) version 3.6a3. Distributed by the author. Department of Genome Sciences, University of Washington, SeattleGoogle Scholar
  17. Fox TD (1987) Natural variation in the genetic code. Ann Rev Genet 21:67–91. DOI 10.1146/annurev.ge.21.120187.000435Google Scholar
  18. Freimoser FM, Hu G, St. Leger RJ (2005) Variation in gene expression as the insect pathogen Metarhizium anisopliae adapts to different host cuticles or nutrient deprivation in vitro. Microbiol 151:361–371. DOI 10.1099/mic.0.27560-0Google Scholar
  19. Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481. DOI 10.1126/science.283.5407.1476Google Scholar
  20. Gutell RR, Lee JC, Cannone JJ (2002) The accuracy of ribosomal RNA comparative structure models. Curr Opin Struc Biol 12:301–310. DOI 10.1016/S0959-440X(02)00339-1Google Scholar
  21. Hegedus DD, Khachatourians GG (1993) Identification of molecular variants in mitochondrial DNAs of members of the genera Beauveria, Verticillium, Paecilomyces, Tolypocladium and Metarhizium. Appl Environ Microbiol 59:4283–4288PubMedGoogle Scholar
  22. Hughes WOH, Thomsen L, Eilenberg J, Boomsma JJ (2004) Diversity of entomopathogenic fungi near leaf-cutting ant nests in a neotropical forest, with particular reference to Metarhizium anisopliae var. anisopliae. J Invertebr Pathol 85:46–53. DOI 10.1016/j.jip.2003.12.005Google Scholar
  23. Hur M, Geese WJ, Warig RB (1997) Self-splicing activity of the mitochondrial group-I introns from Aspergillus nidulans and related introns from other species. Curr Genet 32:399–407. DOI 10.1007/s002940050294Google Scholar
  24. Kolesnikova OA, Entelis NS, Mireau H, Fox TD, Martin RP, Tarassov IA (2000) Suppression of mutations in mitochondrial DNA by tRNAs imported from the cytoplasm. Science 289:1931–1933. DOI 10.1126/science.289.5486.1931Google Scholar
  25. Kouvelis VN, Zare R, Bridge PD, Typas MA (1999) Differentiation of mitochondrial subgroups in the Verticillium lecanii species complex. Lett Appl Microbiol 28:263–268. DOI 10.1046/j.1365-2672.1999.00530.xGoogle Scholar
  26. Kouvelis VN, Ghikas DV, Typas MA (2004) The analysis of the complete mitochondrial genome of Lecanicillium muscarium (synonym Verticillium lecanii) suggests a minimum common gene organization in mtDNAs of Sordariomycetes: phylogenetic implications. Fung Genet Biol 41:930–940. DOI 10.1016/j.fgb.2004.07.003Google Scholar
  27. Kurtzman CP, Robnett CJ (2003) Phylogenetic relationships among yeasts of the “Saccharomyces complex” determined from multigene sequence analyses. FEMS Yeast Res 3:417–432. DOI 10.1016/S1567-1356(03)00012-6Google Scholar
  28. Laforest M-J, Roewer I, Lang F (1997) Mitochondrial tRNAs in the lower fungus Spizellomyces punctatus: tRNA editing and UAG ‘stop’ codons recognized as leucine. Nucleic Acids Res 25:626–632PubMedCrossRefGoogle Scholar
  29. Lang BF, Gray MW, Burger G (1999) Mitochondrial genome evolution and the origins of eukaryotes. Annu Rev Genet 33:351–397. DOI 10.1146/annurev.genet.33.1.351Google Scholar
  30. Leal SCM, Bertioli DJ, Butt TM, Carder JH, Burrows P, Peberdy JF (1997) Amplification and restriction endonuclease digestion of the Pr1 gene for the detection and characterization of Metarhizium strains. Mycol Res 101:257–265CrossRefGoogle Scholar
  31. Mavridou A, Typas MA (1998) Intraspecific polymorphism in Metarhizium anisopliae var. anisopliae revealed by analysis of rRNA gene complex and mtDNA RFLPs. Mycol Res 102:1233–1241CrossRefGoogle Scholar
  32. Mavridou A, Cannone J, Typas MA (2000) Identification of group-I introns at the three different positions within the 28S rDNA gene of the entomopathogenic fungus Metarhizium anisopliae var. anisopliae. Fung Genet Biol 31:79–90. DOI 10.1006/fgbi.2000.1232Google Scholar
  33. Pantou MP, Mavridou A, Typas MA (2003) IGS sequence variation, group-I introns and the complete nuclear ribosomal DNA of the entomopathogenic fungus Metarhizium: excellent tools for isolate detection and phylogenetic analysis. Fung Genet Biol 38:159–174. DOI 10.1016/S1087-1845(02)00536-4Google Scholar
  34. Paquin B, Lang BF (1996) The mitochondrial DNA of Allomyces macrogynus: the complete genomic sequence from an ancestral fungus. J Mol Biol 255:688–701. DOI 10.1006/jmbi.1996.0056Google Scholar
  35. Paquin B, Laforest M-J, Forget L, Roewer I, Wang Z, Longcore J, Lang F (1997) The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression. Curr Genet 31:380–395. DOI 10.1007/s002940050220Google Scholar
  36. Saccone S, Gissi C, Reyes A, Larizza A, Sbisa E, Pesole G (2002) Mitochondrial DNA in metazoa: degree of freedom in a frozen event. Gene 286:3–12. DOI 10.1016/S0378-1119(01)00807-1Google Scholar
  37. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, NYGoogle Scholar
  38. Screen S, Bailey A, Charnley K, Cooper R, Clarkson J (1998) Isolation of a nitrogen response regulator gene (nrr1) from Metarhizium anisopliae. Gene 221:17–24. DOI 10.1016/S0378-1119(98)00430-2Google Scholar
  39. Schäfer B (2003) Genetic conservation versus variability in mitochondria: the architecture of the mitochondrial genome in the petite-negative yeast Schizosaccharomyces pombe. Curr Genet 43:311–326. DOI 10.1007/s00294-003-0404-5Google Scholar
  40. Sekito T, Okamoto K, Kitano H, Yoshida K (1995) The complete mitochondrial DNA sequence of Hansenula wingei reveals new characteristics of yeast mitochondria. Curr Genet 28:39–53PubMedCrossRefGoogle Scholar
  41. St. Leger RJ, Charnley AK, Cooper RM (1986) Cuticle-degrading enzymes of entomopathogenic fungi: synthesis in culture on cuticle. J Invertebr Pathol 48:85–95. DOI 10.1016/0022-2011(86)90146-1Google Scholar
  42. St. Leger RJ, Joshi L, Bidochka MJ, Rizzo NW, Roberts DW (1996a) Biochemical characterization and ultrastructural localization of two extracellular trypsins produced by Metarhizium anisopliae in infected insect cuticles. Appl Environ Microbiol 62:1257–1264PubMedGoogle Scholar
  43. St. Leger RJ, Joshi L, Bidochka M, Roberts DW (1996b) Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc Natl Acad Sci USA 93:6349–6354PubMedCrossRefGoogle Scholar
  44. Sugimoto M, Koike M, Hiyama N, Nagao H (2003) Genetic, morphological, and virulence characterization of the entomopathogenic fungus Vericillium lecanii. J Invertebr Pathol 82:176–187. DOI 10.1016/S0022-2011(03)00014-4Google Scholar
  45. Swofford DL (1998) PAUP*. Phylogenetic analysis using parsimony (*) and other methods, version 4. Sinauer Associates, SunderlandGoogle Scholar
  46. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  47. Typas MA, Griffen AM, Bainbridge BW, Heale JB (1992) Restriction fragment length polymorphisms in mitochondrial DNA and ribosomal RNA gene complexes as an aid to the characterization of species and sub-species populations in the genus Verticillium. FEMS Microbiol Lett 95:157–162CrossRefGoogle Scholar
  48. Typas MA, Pantou M, Ghikas D (2001) Genetic fingerprinting tools and comparison of entomopathogenic fungi. In: Vurro M, Gressel J, Butt T, Harman GE, Pilgeram A, St. Leger R J, Nuss DL (eds) Enhancing biocontrol agents and handling risks. IOS Press, Amsterdam, pp 217–228Google Scholar
  49. Uribe D, Khachatourians GG (2004) Restriction fragment length polymorphisms of mitochondrial genome of the entomopathogenic fungus Beauveria bassiana reveals high intraspecific variation. Mycol Res 108:1070–1078. DOI 10.1017/S0953756204000760Google Scholar
  50. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biolsci 13:555–556Google Scholar
  51. Wang C, Hu G, St. Leger RJ (2005) Differential gene expression by Metarhizium anisopliae growing in root exudate and host (Manduca sexta) cuticle or hemolymph reveals mechanisms of physiological adaptation. Fung Genet Biol 42:704–718. DOI 10.1016/j.fgb.2005.04.006Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Dimitri V. Ghikas
    • 1
  • Vassili N. Kouvelis
    • 1
  • Milton A. Typas
    • 1
  1. 1.Department of Genetics and Biotechnology, Faculty of BiologyUniversity of AthensAthensGreece

Personalised recommendations