Archives of Microbiology

, Volume 185, Issue 5, pp 373–382 | Cite as

Indole-3-acetic acid improves Escherichia coli’s defences to stress

  • C. Bianco
  • E. Imperlini
  • R. Calogero
  • B. Senatore
  • A. Amoresano
  • A.  Carpentieri
  • P. Pucci
  • R. DefezEmail author
Original Paper


Indole-3-acetic acid (IAA) is a ubiquitous molecule playing regulatory roles in many living organisms. To elucidate the physiological changes induced by IAA treatment, we used Escherichia coli K-12 as a model system. By microarray analysis we found that 16 genes showed an altered expression level in IAA-treated cells. One-third of these genes encode cell envelope components, or proteins involved in bacterial adaptation to unfavourable environmental conditions. We thus investigated the effect of IAA treatment on some of the structural components of the envelope that may be involved in cellular response to stresses. This showed that IAA-treated cells had increased the production of trehalose, lipopolysaccharide (LPS), exopolysaccharide (EPS) and biofilm. We demonstrated further that IAA triggers an increased tolerance to several stress conditions (heat and cold shock, UV-irradiation, osmotic and acid shock and oxidative stress) and different toxic compounds (antibiotics, detergents and dyes) and this correlates with higher levels of the heat shock protein DnaK. We suggest that IAA triggers an increased level of alert and protection against external adverse conditions by coordinately enhancing different cellular defence systems.


Trehalose DnaK LPS EPS Biofilm Stress response 



We wish to thank S. Adhya and the E. coli Genetic Stock Centre for providing bacterial strains. We acknowledge A. Spena and J. Beckwith for their helpful discussion, C. Sole and R. Vito for technical assistance. This work was supported by the European Union INCO-DEV SONGLINES grant, project ICA4-CT-2001-10059 and by Italian MIUR, project FIRB RBNE0118BHE. We are grateful to P. De Luca (BioGEM Ariano Irpino-AV) and S. Crispi (IGB-Naples) who carried out the arrays hybridization and scanning.


  1. Ashwell G (1966) Determination of deoxy sugars with 2-thiobarbituric acid. Methods Enzymol 6:89–92Google Scholar
  2. Baldi P, Long AD (2001) A bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17:509–519PubMedCrossRefGoogle Scholar
  3. Benaroudj N, Lee DH, Goldberg AL (2001) Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276:24261–24267PubMedCrossRefGoogle Scholar
  4. Blattner FR, Plunket GR, Bloch CA, Perna NT, Burland V, Riley M et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1461PubMedCrossRefGoogle Scholar
  5. Bukau B, Hesterkamp T (1998) Role of DnaK and HscA homologs of Hsp70 chaperones in protein folding in E. coli. EMBO J 17:4818–4828PubMedCrossRefGoogle Scholar
  6. Chang YY, Cronan EJ Jr (1999) Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol 33:249–259PubMedCrossRefGoogle Scholar
  7. Caldas T, Demont-Caulet N, Ghazi A, Richarme G (1999) Thermoprotection by glycine betaine and choline. Microbiology 145:2543–2548PubMedGoogle Scholar
  8. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–28PubMedCrossRefGoogle Scholar
  9. Davidson EA (1966) Determination of hexosamine. Methods Enzymol 8:56–60Google Scholar
  10. De Felice M, Griffo G, Lago TC, Limanuro D, Ricca E (1986) Detection of the acetolactate synthase isoenzyme I of Escherichia coli. Methods Enzymol 166:241–244CrossRefGoogle Scholar
  11. De Melo MP, De Lima TM, Pithon-Curi TC, Curi R (2004) The mechanism of indole acetic acid cytotoxicity. Toxicol Lett 148:103–111PubMedCrossRefGoogle Scholar
  12. Deng M, Misra R (1996) Examination of asmA and its effect on the assembly of Escherichia coli outer membrane proteins. Mol Microbiol 21:605–612PubMedCrossRefGoogle Scholar
  13. Diamant S, Eliahu N, Rosenthal D, Goloubinoff P (2001) Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem 276:39586–39591PubMedCrossRefGoogle Scholar
  14. Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F (1951) A colorimetric method for the determination of sugars. Nature 168:167PubMedCrossRefGoogle Scholar
  15. Edwards MD, Booth IR, Miller S (2004) Gating the bacterial mechanosensitive channel: MscS a new paradigm? Curr Opin Microbiol 7:163–167PubMedCrossRefGoogle Scholar
  16. Ebright RH, Beckwith J (1985) The catabolite gene activator protein (CAP) is not required for indole-3-acetic acid to activate transcription of the araBAD operon of Escherichia coli K-12. Mol Gen Genet 201:51–55PubMedCrossRefGoogle Scholar
  17. Echave P, Esparza-Ceròn MA, Cabiscol E, Tamarit J, Ros J, Membrillo-Hernàndez J, Lin ECC (2002) Dank dependence of mutant ethanol oxidoreductases evolved for aerobic function and protective role of the chaperone against protein oxidative damage in Escherichia coli. Proc Natl Acad Sci USA 99:4626–4631PubMedCrossRefGoogle Scholar
  18. Folkes LK, Greco O, Dachs GU, Stratford MRL, Wardman P (2002) 5-Fluoroindole-3-acetic acid: a prodrug activated by a peroxidase with potential for use in target cancer therapy. Biochem Pharmacol 63:265–272PubMedCrossRefGoogle Scholar
  19. Kandror O, Deleon A, Goldberg AL (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci USA 99:9727–9732PubMedCrossRefGoogle Scholar
  20. Kaushik JK, Bhat R (2003) Why is trehalose an exceptional protein stabilizer? J Biol Chem 278:26458–26465PubMedCrossRefGoogle Scholar
  21. Kende H, Zeevaart JAD (1997) The five ‘classical’ plant hormones. Plant Cell 9:1197–1210PubMedCrossRefGoogle Scholar
  22. Kline LS, Brown CS, Bankaitis V, Montefiori DC, Craig K (1980) Metabolite gene regulation of the L-arabinose operon in Escherichia coli with indoleacetic acid and other indole derivatives. Proc Natl Acad Sci USA 77:1768–1772PubMedCrossRefGoogle Scholar
  23. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  24. Leigh AJ, Signer RE, Walker GC (1985) Exopolysaccharide deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc Natl Acad Sci USA 82:6231–6235PubMedCrossRefGoogle Scholar
  25. Lemcke K, Prinsen E, Van Onckelen H, Schmülling T (2000) The ORF8 gene product of Agrobacterium rhizogenes TL-DNA has tryptophan 2-monooxygenase activity. Mol Plant Microbe Interact 13:787–790PubMedCrossRefGoogle Scholar
  26. Leive L (1965) Release of lipopolysaccharide by EDTA treatment of E. coli. Biochem Biophys Res Commun 21:290–296PubMedCrossRefGoogle Scholar
  27. Lillie SH, Pringle JR (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol 143:1384–1394PubMedGoogle Scholar
  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  29. Lodato P, Se govia de Huergo M, Buera MP (1999) viability and thermal stability of a strain of Saccharomyces cerevisiae freeze-dried in different sugar and polymer matrices. Appl Microbiol Biotechnol 52:215–220PubMedCrossRefGoogle Scholar
  30. Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA (2001) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310CrossRefGoogle Scholar
  31. Marroquì S, Zorreguieta A, Santamarìa C, Temprano F, Soberòn M, Megìas M, Downie JA (2001) Enhanced symbiotic performance by Rhizobium tropici glycogen synthase mutants. J Bacteriol 183:854–864PubMedCrossRefGoogle Scholar
  32. Morimoto RI (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259:1409–1410PubMedCrossRefGoogle Scholar
  33. Nikaido H (1976) Outer membrane of Salmonella typhimurium: transmembrane diffusion of some hydrophobic substances. Biochim Biophys Acta 433:118–132PubMedCrossRefGoogle Scholar
  34. Osborn MJ (1963) Studies on the gram-negative cell wall. Biochemistry 50:499–506Google Scholar
  35. Polissi A, De Laurentis W, Zangrossi S, Briani F, Longhi V, Pesole G, Dehò G (2003) Res Microbiol 154:573–580PubMedCrossRefGoogle Scholar
  36. Prusty R, Grisafi P, Fink GR (2004) The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 101:4153–4157PubMedCrossRefGoogle Scholar
  37. Purvis JE, Yomano LP, Ingram LO (2005) Enhanced trehalose production improves growth of Escherichia coli under osmotic stress. Appl Environ Microbiol 71:3761–3769PubMedCrossRefGoogle Scholar
  38. Rezuchova B, Miticka H, Homerova D, Roberts M, Kormanec J (2003) New members of the Escherichia coli δE regulon identified by a two-plasmid system. FEMS Microbiol Lett 225:1–7PubMedCrossRefGoogle Scholar
  39. Stepanovic S, Vucovic D, Dakin I, Savic B, Svabic-Vlahovic M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40:175–179PubMedCrossRefGoogle Scholar
  40. Saviozzi S, Iazzetti G, Caserta E, Guffanti A, Calogero RA (2004) Microarray data analysis and mining. Methods Mol Med 94:67–90PubMedGoogle Scholar
  41. Singer AM, Lindquist S (1998) Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol 16:460–468PubMedCrossRefGoogle Scholar
  42. Sukupolvi S, Vaara M, Helander IL, Viljanen P, Makela H (1984) New Salmonella typhimurium mutants with altered outer membrane permeability. J Bacteriol 159:704–712PubMedGoogle Scholar
  43. Tamarit J, Cabiscol E, Ros J (1998) Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress. J Biol Chem 273:3027–3032PubMedCrossRefGoogle Scholar
  44. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionising radiation response. Proc Natl Acad Sci USA 98:5116–5121PubMedCrossRefGoogle Scholar
  45. Yoda K, Kawada T, Kaibara A, Fujie A, Abe M, Hashimoto H et al (2000) Biochi Biotechnol Biochem 64:1937–1941CrossRefGoogle Scholar
  46. Zimmer W, Wesche M, Timmermans L (1998) Identification and isolation of the indole-3-pyruvate decarboxylase gene from Azospirillum brasilense Sp7: sequencing and functional analysis of the gene locus. Curr Microbiol 36:327–331PubMedCrossRefGoogle Scholar
  47. Zou Y, Crowley DJ, Houten BT (1998) Involvement of molecular chaperonins in nucleotide excision repair. J Biol Chem 276:12887–12892CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • C. Bianco
    • 1
  • E. Imperlini
    • 1
  • R. Calogero
    • 2
  • B. Senatore
    • 1
  • A. Amoresano
    • 3
  • A.  Carpentieri
    • 3
  • P. Pucci
    • 3
  • R. Defez
    • 1
    Email author
  1. 1.Institute of Genetics and BiophysicsAdriano Buzzati TraversoNaplesItaly
  2. 2.Dipartimento di Scienze Cliniche e Biologiche Ospedale S. LuigiOrbassano (TO)Italy
  3. 3.Dipartimento di Chimica Organica e BiochimicaUniversità Federico II di NapoliNapoliItaly

Personalised recommendations