Advertisement

The rubrerythrin-like protein Hsp21 of Clostridium acetobutylicum is a general stress protein

  • Falk Hillmann
  • Ralf-Jörg Fischer
  • Hubert BahlEmail author
Original Paper

Abstract

The small heat shock protein Hsp21 of Clostridium acetobutylicum was recently identified as a rubrerythrin-like protein with a rubredoxin-like FeS4 domain at the N-terminus and a ferritin-like diiron domain at the C-terminus. Here, we report that the two identical tandem genes rbr3A and rbr3B, which encode the heat shock protein Hsp21, show the transcription pattern of general stress genes. Northern blot analysis indicated that the transcription of the rbr3AB operon is induced by various environmental stress conditions: in addition to heat and oxidative stress, an increase of the pH of the growth medium from 4.5 to 6.2, addition of the salt NaCl (400 mM) or of the solvent butanol (3.5% v/v), and lowering the incubation temperature from 37 to 25°C resulted in transiently increased transcript levels. The promoter region deduced from the 5′ end of the mRNA has only limited similarity to the consensus promoter sequence of Gram-positive bacteria. A conserved inverted repeat between this promoter and the initiation codon is proposed to have a regulatory role. Although C. acetobutylicum is regarded as a strictly anaerobic bacterium, live/dead staining demonstrated that it can survive exposure to air or H2O2 and other stressors to various extents.

Keywords

General stress Heat shock Anaerobic Clostridium Flavoprotein 

Notes

Acknowledgements

We thank Rhena Schumann for providing assistance in fluorescence imaging.

References

  1. Alsaker KV, Papoutsakis ET (2005) Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum. J Bacteriol 187:7103–7118PubMedCrossRefGoogle Scholar
  2. Bahl H, Gottschalk G (1984) Parameters affecting solvent production by Clostridium acetobutylicum in continuous culture. Biotechnol Bioeng Symp 14:215–223Google Scholar
  3. Bahl H, Andersch W, Gottschalk G (1982) Continuous production of acetone and butanol by Clostridium acetobutylicum grown in a two-stage phosphate limited chemostat. Eur J Appl Microbiol Biotechnol 15:201–205CrossRefGoogle Scholar
  4. Bahl H, Gottwald M, Kuhn A, Rale V, Andersch W, Gottschalk G (1986) Nutritional factors affecting the ratio of solvents produced by Clostridium acetobutylicum. Appl Environ Microbiol 52:169–172PubMedGoogle Scholar
  5. Bahl H, Müller H, Behrens S, Joseph H, Narberhaus F (1995) Expression of heat shock genes in Clostridium acetobutylicum. FEMS Microbiol Rev 17:341–348PubMedCrossRefGoogle Scholar
  6. Bonomi F, Kurtz DM Jr, Cui X (1996) Ferroxidase activity of recombinant Desulfovibrio vulgaris rubrerythrin. J Biol Inorg Chem 1:67–72CrossRefGoogle Scholar
  7. Chan PF, Foster SJ, Ingham E, Clements MO (1998) The Staphylococcus aureus alternative sigma factor σB controls the environmental stress response but not starvation survival or pathogenicity in a mouse abscess model. J Bacteriol 180:6082–6089PubMedGoogle Scholar
  8. Coulter ED, Shenvi NV, Kurtz DM Jr (1999) NADH peroxidase activity of rubrerythrin. Biophys Res Commun 255:317–323CrossRefGoogle Scholar
  9. deMaré F, Kurtz DM Jr, Nordlund P (1996) The structure of Desulfovibrio vulgaris rubrerythrin reveals a unique combination of rubredoxin-like FeS4 and ferritin-like diiron domains. Nat Struct Biol 3:539–546PubMedCrossRefGoogle Scholar
  10. Dürre P, Bahl H (1996) Microbial production of acetone/butanol/isopropanol. In: Rehm HJ, Reed G, Pühler A, Stadler P (eds) Biotechnology: a multi-volume comprehensive treatise, vol 1, 2nd edn. VCH Verlagsgesellschaft, Weinheim, pp 229–268Google Scholar
  11. Ferreira A, O’Byrne CP, Boor KJ (2001) Role of σB in heat, ethanol, acid, and oxidative stress resistance and during carbon starvation in Listeria monocytogenes. Appl Environ Microbiol 67:4454–4457PubMedCrossRefGoogle Scholar
  12. Fournier M, Aubert C, Dermoun Z, Durand MC, Moinier D, Dolla A (2006) Response of the anaerobe Desulfovibrio vulgaris Hildenborough to oxidative conditions: proteome and transcript analysis. Biochimie 88:85–94PubMedCrossRefGoogle Scholar
  13. Geer LY, Domrachev M, Lipman DJ, Bryant SH (2002) CDART: protein homology by domain architecture. Genome Res 12:1619–1623PubMedCrossRefGoogle Scholar
  14. Geissmann TA, Teuber M, Meile L (1999) Transcriptional analysis of the rubrerythrin and superoxide dismutase genes of Clostridium perfringens. J Bacteriol 181:7136–7139PubMedGoogle Scholar
  15. Hecker M, Völker U (2001) General stress response of Bacillus subtilis and other bacteria. Adv Microb Physiol 44:35–91PubMedCrossRefGoogle Scholar
  16. Kawasaki S, Ishikura J, Watamura Y, Ono M, Niimura Y (2004) Identification of O2-induced peptides in the obligatory anaerobe, Clostridium acetobutylicum. FEBS Lett 571:21–25PubMedCrossRefGoogle Scholar
  17. Kellmann JW, Pichersky E, Piechulla B (1990) Analysis of the diurnal expression patterns of the tomato chlorophyll a/b binding protein genes. Influence of light and characterization of the gene family. Photochem Photobiol 52:35–41PubMedCrossRefGoogle Scholar
  18. Lumppio HL, Shenvi NV, Summers AO, Voordouw G, Kurtz DM Jr (2001) Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system. J Bacteriol 183:101–108PubMedCrossRefGoogle Scholar
  19. Mani N, Dupuy B (2001) Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc Natl Acad Sci USA 98:5844–5849PubMedCrossRefGoogle Scholar
  20. Mani N, Lyras D, Barroso L, Howarth P, Wilkins T, Rood JI, Sonenshine AL, Dupuy B (2002) Environmental response and autoregulation of Clostridium difficile TxeR, a sigma factor for toxin gene expression. J Bacteriol 184:5971–5978PubMedCrossRefGoogle Scholar
  21. May A, Hillmann F, Riebe O, Fischer RJ, Bahl H (2004) A rubrerythrin-like oxidative stress protein of C. acetobutylicum is encoded by a duplicated gene and identical to heat shock protein Hsp21. FEMS Microbiol Lett 238:249–254PubMedGoogle Scholar
  22. Moncrief JS, Barroso LA, Wilkins TD (1997) Positive regulation of Clostridium difficile toxins. Infect Immun 65:1105–1108PubMedGoogle Scholar
  23. Narberhaus F, Bahl H (1992) Cloning, sequencing, and molecular analysis of the groESL operon of Clostridium acetobutylicum. J Bacteriol 174:3282–3289PubMedGoogle Scholar
  24. Nölling J, Breton G, Omelchenko MV, Makarova KS, Zeng Q, Gibson R, Mei Lee H, Dubois J, Qiu D, Hitti J, GTC Sequencing Center Production, Finishing, and Bioinformatics Team, Wolf YI, Tatusov RL, Sabathe F, Doucette-Stamm L, Soucaille P, Daly MJ, Bennett GN, Koonin EV, Smith DR (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838PubMedCrossRefGoogle Scholar
  25. O’Brien RW, Morris JG (1971) Oxygen and the growth and metabolism of Clostridium acetobutylicum. J Gen Microbiol 68:307–318PubMedGoogle Scholar
  26. Pich A, Narberhaus F, Bahl H (1990) Induction of heat shock proteins during initiation of solvent formation in Clostridium acetobutylicum. Appl Microbiol Biotechnol 33:697–704CrossRefGoogle Scholar
  27. Sonenshein AL, Haraldsen JD, Dupuy B (2005) RNA-polymerases and alternative σ-factors. In: Dürre P (ed) Handbook on Clostridia. CRC Press, Boca Raton, pp 607–630Google Scholar
  28. Storz G, Hengge-Aronis R (2000) Bacterial stress responses. ASM Press, WashingtonGoogle Scholar
  29. Sztukowska M, Bugno M, Potempa J, Travis J, Kurtz DM Jr (2002) Role of rubrerythrin in the oxidative stress response of Porphyromonas gingivalis. Mol Microbiol 44:479–488PubMedCrossRefGoogle Scholar
  30. Weinberg MV, Jenney FE Jr, Cui X, Adams MWW (2004) Rubrerythrin from the hyperthermopilic archaeon Pyrococcus furiosus is a rubredoxin-dependent, iron-containing peroxidase. J Bacteriol 186:7888–7895PubMedCrossRefGoogle Scholar
  31. Young M, Minton NP, Staudenbauer WL (1989) Recent advances in the genetics of the clostridia. FEMS Microbiol Rev 63:301–326CrossRefGoogle Scholar
  32. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Falk Hillmann
    • 1
  • Ralf-Jörg Fischer
    • 1
  • Hubert Bahl
    • 1
    Email author
  1. 1.Division of Microbiology, Institute of Biological SciencesUniversity of RostockRostockGermany

Personalised recommendations