Archives of Microbiology

, Volume 185, Issue 2, pp 115–126 | Cite as

Global gene regulation in Yersinia enterocolitica: effect of FliA on the expression levels of flagellar and plasmid-encoded virulence genes

Original Paper


This study describes the involvement of the sigma factor of the flagellar system, FliA, in global gene regulation of Yersinia enterocolitica. In addition to exhibiting a positive effect upon the expression levels of eight class III flagellar operons, FliA also exhibited a negative effect upon the expression levels of four virulence operons that are located on the pYV virulence plasmid. These are yadA, virC, yopQ, and the insertion element ISYen1. While the positive effect on class III flagellar operons by FliA is most likely direct, the negative effect on the virulence operons appears to require the known transcriptional activator of these genes, VirF. This was determined using microarray analysis, quantitative PCR and a search for putative binding sites for FliA. In addition to the FliA regulation of flagellar and plasmid-encoded virulence genes, we studied temperature regulation of these genes. While wild-type cells exhibited increased expression levels of flagellar genes and decreased expression levels of plasmid-encoded virulence genes at 25°C (as compared to 37°C), temperature dependence of gene expression was much reduced in the fliA mutants. We conclude that FliA contributes to the inverse temperature regulation of flagellar and plasmid-encoded virulence genes. We present a network of transcriptional regulation around FlhD/FlhC and FliA.


FliA FlhD/FlhC Flagellar genes Plasmid-encoded virulence genes Microarray analysis Global regulation Transcriptional network 



Open reading frame


Polymerase chain reaction


Photomultiplier tube


Quantitative PCR


Yersinia outer proteins

Supplementary material

203_2005_77_MOESM1_ESM.xls (1.4 mb)
Supplementary material


  1. Aldridge P, Hughes KT (2002) Regulation of flagellar assembly. Curr Opin Microbiol 5:160–165CrossRefPubMedGoogle Scholar
  2. Barker CS, Prüß BM (2005) FlhD/FlhC, a global transcriptional regulator in Escherichia coli. In: Prüß BM (eds) Global regulatory networks in enteric bacteria. Research Signpost, Trivandrum, pp 13–30Google Scholar
  3. Bartlett DH, Frantz BB, Matsumura P (1988) Flagellar transcriptional activators FlbB and FlaI: gene sequences and 5′ consensus sequences of operons under FlbB and FlaI control. J Bacteriol 170:1575–1581PubMedGoogle Scholar
  4. Bertin P, Terao E, Lee EH, Lejeune P, Colson C, Danchin A, Collatz E (1994) The H-NS protein is involved in the biogenesis of flagella in Escherichia coli. J Bacteriol 176:5537–5540PubMedGoogle Scholar
  5. Bleves S, Marenne MN, Detry G, Cornelis GR (2002) Up-regulation of the Yersinia enterocolitica yop regulon by deletion of the flagellum master operon flhDC. J Bacteriol 184:3214–3223CrossRefPubMedGoogle Scholar
  6. Bottone EJ (1977) Yersinia enterocolitica: a panoramic view of a charismatic microorganism. CRC Crit Rev Microbiol 5:211–241PubMedCrossRefGoogle Scholar
  7. Chadsey MS, Karlinsey JE, Hughes KT (1998) The flagellar anti-sigma factor FlgM actively dissociates Salmonella typhimurium sigma28 RNA polymerase holoenzyme. Genes Dev 12:3123–3136PubMedGoogle Scholar
  8. Chilcott GS, Hughes KT (2000) Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64:694–708CrossRefPubMedGoogle Scholar
  9. Chuang SE, Daniels DL, Blattner FR (1993) Global regulation of gene expression in Escherichia coli. J Bacteriol 175:2026–2036PubMedGoogle Scholar
  10. Cornelis GR (1994) Yersinia pathogenicity factors. Curr Top Microbiol Immunol 192:243–263PubMedGoogle Scholar
  11. Cornelis G, Sluiters C, de Rouvroit CL, Michiels T (1989) Homology between virF, the transcriptional activator of the Yersinia virulence regulon, and AraC, the Escherichia coli arabinose operon regulator. J Bacteriol 171:254–262PubMedGoogle Scholar
  12. Cornelis GR, Sluiters C, Delor I, Geib D, Kaniga K, de Lambert RC, Sory MP, Vanooteghem JC, Michiels T (1991) ymoA, a Yersinia enterocolitica chromosomal gene modulating the expression of virulence functions. Mol Microbiol 5:1023–1034PubMedCrossRefGoogle Scholar
  13. Cover TL, Aber RC (1989) Yersinia enterocolitica. N Engl J Med 321:16–24PubMedCrossRefGoogle Scholar
  14. Dorrell N, Li SR, Everest PH, Dougan G, Wren BW (1998) Construction and characterisation of a Yersinia enterocolitica O:8 ompR mutant. FEMS Microbiol Lett 165:145–151CrossRefPubMedGoogle Scholar
  15. Farr SB, Arnosti DN, Chamberlin MJ, Ames BN (1989) An apaH mutation causes AppppA to accumulate and affects motility and catabolite repression in Escherichia coli. Proc Natl Acad Sci USA 86:5010–5014PubMedCrossRefGoogle Scholar
  16. Fauconnier A, Allaoui A, Campos A, Van EA, Cornelis GR, Bollen A (1997) Flagellar flhA, flhB and flhE genes, organized in an operon, cluster upstream from the inv locus in Yersinia enterocolitica. Microbiol 143(Pt 11):3461–3471Google Scholar
  17. Francez-Charlot A, Laugel B, Van GA, Dubarry N, Wiorowski F, Castanie-Cornet MP, Gutierrez C, Cam K (2003) RcsCDB His–Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol 49:823–832CrossRefPubMedGoogle Scholar
  18. Hagiwara D, Sugiura M, Oshima T, Mori H, Aiba H, Yamashino T, Mizuno T (2003) Genome-wide analyses revealing a signaling network of the RcsC–YojN–RcsB phosphorelay system in Escherichia coli. J Bacteriol 185:5735–5746CrossRefPubMedGoogle Scholar
  19. Helmann JD, Chamberlin MJ (1987) DNA sequence analysis suggests that expression of flagellar and chemotaxis genes in Escherichia coli and Salmonella typhimurium is controlled by an alternative sigma factor. Proc Natl Acad Sci USA 84:6422–6424PubMedCrossRefGoogle Scholar
  20. Homma M, Kutsukake K, Iino T, Yamaguchi S (1984) Hook-associated proteins essential for flagellar filament formation in Salmonella typhimurium. J Bacteriol 157:100–108PubMedGoogle Scholar
  21. Ide N, Ikebe T, Kutsukake K (1999) Reevaluation of the promoter structure of the class 3 flagellar operons of Escherichia coli and Salmonella. Genes Genet Syst 74:113–116CrossRefPubMedGoogle Scholar
  22. Iriarte M, Stainier I, Mikulskis AV, Cornelis GR (1995) The fliA gene encoding sigma 28 in Yersinia enterocolitica. J Bacteriol 177:2299–2304PubMedGoogle Scholar
  23. Kaniga K, Delor I, Cornelis GR (1991) A wide-host-range suicide vector for improving reverse genetics in gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. Gene 109:137–141CrossRefPubMedGoogle Scholar
  24. Kapatral V, Minnich SA (1995) Co-ordinate, temperature-sensitive regulation of the three Yersinia enterocolitica flagellin genes. Mol Microbiol 17:49–56PubMedCrossRefGoogle Scholar
  25. Kapatral V, Olson JW, Pepe JC, Miller VL, Minnich SA (1996) Temperature-dependent regulation of Yersinia enterocolitica class III flagellar genes. Mol Microbiol 19:1061–1071CrossRefPubMedGoogle Scholar
  26. Kapatral V, Anderson I, Ivanova N, Reznik G, Los T, Lykidis A, Bhattacharyya A, Bartman A, Gardner W, Grechkin G, Zhu L, Vasieva O, Chu L, Kogan Y, Chaga O, Goltsman E, Bernal A, Larsen N, D’Souza M, Walunas T, Pusch G, Haselkorn R, Fonstein M, Kyrpides N, Overbeek R (2002) Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586. J Bacteriol 184:2005–2018CrossRefPubMedGoogle Scholar
  27. Kapatral V, Campbell JW, Minnich SA, Thomson NR, Matsumura P, Prüß BM (2004) Gene array analysis of Yersinia enterocolitica FlhD and FlhC: regulation of enzymes affecting synthesis and degradation of carbamoylphosphate. Microbiol 150:2289–2300CrossRefGoogle Scholar
  28. Ko M, Park C (2000) Two novel flagellar components and H–NS are involved in the motor function of Escherichia coli. J Mol Biol 303:371–382CrossRefPubMedGoogle Scholar
  29. Kutsukake K, Ohya Y, Iino T (1990) Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J Bacteriol 172:741–747PubMedGoogle Scholar
  30. Lambert de Rouvroit C, Sluiters C, Cornelis GR (1992) Role of the transcriptional activator, VirF, and temperature in the expression of the pYV plasmid genes of Yersinia enterocolitica. Mol Microbiol 6:395–409PubMedCrossRefGoogle Scholar
  31. Lehnen D, Blumer C, Polen T, Wackwitz B, Wendisch VF, Unden G (2002) LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli. Mol Microbiol 45:521–532CrossRefPubMedGoogle Scholar
  32. Liu X, Matsumura P (1994) The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J Bacteriol 176:7345–7351PubMedGoogle Scholar
  33. Liu X, Matsumura P (1995) An alternative sigma factor controls transcription of flagellar class-III operons in Escherichia coli: gene sequence, overproduction, purification and characterization. Gene 164:81–84CrossRefPubMedGoogle Scholar
  34. Liu X, Matsumura P (1996) Differential regulation of multiple overlapping promoters in flagellar class II operons in Escherichia coli. Mol Microbiol 21:613–620PubMedCrossRefGoogle Scholar
  35. Lucas RL, Lostroh CP, DiRusso CC, Spector MP, Wanner BL, Lee CA (2000) Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar typhimurium. J Bacteriol 182:1872–1882CrossRefPubMedGoogle Scholar
  36. Macnab RM (1996) Flagella and motility. In: Neidhardt FC, Ingraham JL, Brooks Low K, Magasanik B, Schaechter M, Umbarber HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. American Society for Microbiology, Washington, pp 123–145Google Scholar
  37. Mizushima T, Koyanagi R, Suzuki E, Tomura A, Kutsukake K, Miki T, Sekimizu K (1995) Control by phosphatidylglycerol of expression of the flhD gene in Escherichia coli. Biochim Biophys Acta 1245:397–401PubMedGoogle Scholar
  38. Mizushima T, Koyanagi R, Katayama T, Miki T, Sekimizu K (1997) Decrease in expression of the master operon of flagellin synthesis in a dnaA46 mutant of Escherichia coli. Biol Pharm Bull 20:327–331PubMedGoogle Scholar
  39. Mytelka DS, Chamberlin MJ (1996) Escherichia coli fliAZY operon. J Bacteriol 178:24–34PubMedGoogle Scholar
  40. Ohnishi K, Kutsukake K, Suzuki H, Iino T (1990) Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium. Mol Gen Genet 221:139–147CrossRefPubMedGoogle Scholar
  41. Pepe JC, Badger JL, Miller VL (1994) Growth phase and low pH affect the thermal regulation of the Yersinia enterocolitica inv gene. Mol Microbiol 11:123–135PubMedCrossRefGoogle Scholar
  42. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515CrossRefPubMedGoogle Scholar
  43. Prüß BM (2000) FlhD, a transcriptional regulator in bacteria. Recent Res Dev Microbiol 4:31–42Google Scholar
  44. Prüß BM, Wolfe AJ (1994) Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression in Escherichia coli. Mol Microbiol 12:973–984PubMedCrossRefGoogle Scholar
  45. Prüß BM, Campbell JW, Van Dyk TK, Zhu C, Kogan Y, Matsumura P (2003) FlhD/FlhC is a regulator of anaerobic respiration and the Entner-Doudoroff pathway through induction of the methyl-accepting chemotaxis protein Aer. J Bacteriol 185:534–543CrossRefPubMedGoogle Scholar
  46. Revell PA, Miller VL (2001) Yersinia virulence: more than a plasmid. FEMS Microbiol Lett 205:159–164PubMedCrossRefGoogle Scholar
  47. Rohde JR, Fox JM, Minnich SA (1994) Thermoregulation in Yersinia enterocolitica is coincident with changes in DNA supercoiling. Mol Microbiol 12:187–199PubMedCrossRefGoogle Scholar
  48. Rohde JR, Luan XS, Rohde H, Fox JM, Minnich SA (1999) The Yersinia enterocolitica pYV virulence plasmid contains multiple intrinsic DNA bends which melt at 37°C. J Bacteriol 181:4198–4204PubMedGoogle Scholar
  49. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378PubMedGoogle Scholar
  50. Schmiel DH, Young GM, Miller VL (2000) The Yersinia enterocolitica phospholipase gene yplA is part of the flagellar regulon. J Bacteriol 182:2314–2320CrossRefPubMedGoogle Scholar
  51. Shi W, Zhou Y, Wild J, Adler J, Gross CA (1992) DnaK, DnaJ, and GrpE are required for flagellum synthesis in Escherichia coli. J Bacteriol 174:6256–6263PubMedGoogle Scholar
  52. Shi W, Bogdanov M, Dowhan W, Zusman DR (1993) The pss and psd genes are required for motility and chemotaxis in Escherichia coli. J Bacteriol 175:7711–7714PubMedGoogle Scholar
  53. Shin S, Park C (1995) Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 177:4696–4702PubMedGoogle Scholar
  54. Skurnik M, Toivanen P (1992) LcrF is the temperature-regulated activator of the yadA gene of Yersinia enterocolitica and Yersinia pseudotuberculosis. J Bacteriol 174:2047–2051PubMedGoogle Scholar
  55. Snellings NJ, Popek M, Lindler LE (2001) Complete DNA sequence of Yersinia enterocolitica serotype 0:8 low-calcium-response plasmid reveals a new virulence plasmid-associated replicon. Infect Immun 69:4627–4638CrossRefPubMedGoogle Scholar
  56. Soutourina O, Kolb A, Krin E, Laurent-Winter C, Rimsky S, Danchin A, Bertin P (1999) Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol 181:7500–7508PubMedGoogle Scholar
  57. Sperandio V, Torres AG, Kaper JB (2002) Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol 43:809–821CrossRefPubMedGoogle Scholar
  58. Suzuki T, Higgins PJ, Crawford DR (2000) Control selection for RNA quantitation. Biotechniques 29:332–337PubMedGoogle Scholar
  59. Suzuki K, Wang X, Weilbacher T, Pernestig AK, Melefors O, Georgellis D, Babitzke P, Romeo T (2002) Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J Bacteriol 184:5130–5140CrossRefPubMedGoogle Scholar
  60. Wattiau P, Cornelis GR (1994) Identification of DNA sequences recognized by VirF, the transcriptional activator of the Yersinia yop regulon. J Bacteriol 176:3878–3884PubMedGoogle Scholar
  61. Wolfe AJ (2005a) Acetyl phosphate is a global signal. In: Prüß BM (ed) Global regulatory networks in enteric bacteria. Research Signpost, Trivandrum, pp 31–44Google Scholar
  62. Wolfe AJ (2005b) The acetate switch. Microbiol Mol Biol Rev 69:12–50CrossRefPubMedGoogle Scholar
  63. Wolfe AJ, Chang DE, Walker JD, Seitz-Partridge JE, Vidaurri MD, Lange CF, Prüß BM, Henk MC, Larkin JC, Conway T (2003) Evidence that acetyl phosphate functions as a global signal during biofilm development. Mol Microbiol 48:977–988CrossRefPubMedGoogle Scholar
  64. Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. Biotechniques 39:75–85PubMedCrossRefGoogle Scholar
  65. Young GM, Smith MJ, Minnich SA, Miller VL (1999) The Yersinia enterocolitica motility master regulatory operon, flhDC, is required for flagellin production, swimming motility, and swarming motility. J Bacteriol 181:2823–2833PubMedGoogle Scholar
  66. Young GM, Badger JL, Miller VL (2000) Motility is required to initiate host cell invasion by Yersinia enterocolitica. Infect Immun 68:4323–4326CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Veterinary and Microbiological SciencesNorth Dakota State UniversityFargoUSA

Personalised recommendations