Archives of Microbiology

, Volume 185, Issue 1, pp 14–22 | Cite as

Betaine aldehyde dehydrogenase from Pseudomonas aeruginosa: cloning, over-expression in Escherichia coli, and regulation by choline and salt

  • Roberto Velasco-García
  • Miguel Angel Villalobos
  • Miguel A. Ramírez-Romero
  • Carlos Mújica-Jiménez
  • Gabriel Iturriaga
  • Rosario A. Muñoz-ClaresEmail author
Original Paper


In the human pathogen Pseudomonas aeruginosa, betaine aldehyde dehydrogenase (BADH) may play a dual role assimilating carbon and nitrogen from choline or choline precursors—abundant at infection sites—and producing glycine betaine, which protects the bacteria against the high-osmolarity stress prevalent in the infected tissues. We cloned the P. aeruginosa BADH gene and expressed the BADH protein in Escherichia coli. The recombinant protein appears identical to its native counterpart, as judged by Western blot, N-terminal amino acid sequence, tryptophan-fluorescence emission spectra, circular-dichroism spectroscopy, size-exclusion chromatography, and kinetic properties. Computational analysis indicated that the promoter sequence of the putative operon that includes the BADH gene has a consensus-binding site for the choline-sensing transcription repressor BetI, and putative boxes for ArcA and Lrp transcription factors but no known elements of response to osmotic stress. This is consistent with the strong induction of BADH expression by choline and with the lack of effect of NaCl. As there were significant amounts of BADH protein and activity in P. aeruginosa cells grown on glucose plus choline, as well as the BADH activity exhibiting tolerance to salt, it is likely that glycine betaine is synthesized in vivo and could play an important osmoprotectant role under conditions of infection.


Pseudomonas aeruginosa Betaine aldehyde dehydrogenase Bet system Computational promoter analysis Choline induction Salt inhibition 



We thank Dr. G. Mendoza, Faculty of Medicine, UNAM, for N-terminal sequencing the recombinant protein, and the laboratory of Fisicoquímica e Ingeniería de Proteínas, Faculty of Medicine, UNAM, for giving us access to the CD equipment. This work was supported by grants to RAM-C from Consejo Nacional de Ciencia y Tecnología (CONACYT 2552P-N and 37820-N).


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1989) Short protocols in molecular biology. Wiley, New YorkGoogle Scholar
  3. Boch J, Kempf B, Schimd R, Bremer E (1996) Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: characterization of the gbsAB genes. J Bacteriol 178:5121–5129PubMedGoogle Scholar
  4. Boch J, Nau-Wagner G, Kneip S, Bremer E (1997) Glycine betaine aldehyde dehydrogenase from Bacillus subtilis: characterization of an enzyme required for the synthesis of the osmoprotectant glycine betaine. Arch Microbiol 168:282–289PubMedCrossRefGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–256PubMedCrossRefGoogle Scholar
  6. Brinkman AB, Ettema TJ, de Vos WM, van der Oost J (2003) The Lrp family of transcriptional regulators. Mol Microbiol 48:287–94PubMedCrossRefGoogle Scholar
  7. Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147PubMedGoogle Scholar
  8. D’souza-Ault MR, Smith LT, Smith GM (1993) Roles of N-acetylglutaminyl-glutamine amide and glycine betaine in adaptation of Pseudomonas aeruginosa to osmotic stress. Appl Environ Microbiol 59:473–478PubMedGoogle Scholar
  9. Falkenberg P, Strøm AR (1990) Purification and characterization of osmoregulatory betaine aldehyde dehydrogenase from Escherichia coli. Biochim Biophys Acta 1034:253–259PubMedGoogle Scholar
  10. Guzmán-Partida A, Valenzuela-Soto EM (1998) Porcine kidney betaine aldehyde dehydrogenase: purification and properties. Comp Biochem Physiol 119:485–491Google Scholar
  11. Hibino T, Meng YL, Kawamitsu Y, Uehara N, Matsuda N, Tanaka Y, Ishikawa H, Baba S, Takabe T, Wada K, Ishii T, Takabe T (2001) Molecular cloning and functional characterization of two kinds of betaine-aldehyde dehydrogenase in betaine-accumulating mangrove Avicennia marina (Forsk.) Vierh. Plant Mol Biol 45:353–363PubMedCrossRefGoogle Scholar
  12. Incharoensakdi A, Matsuda N, Hibino T, Meng YL, Ishikawa H, Hara A, Funaguma T, Takabe T, Takabe T (2000) Overproduction of spinach betaine aldehyde dehydrogenase in Escherichia coli. Structural and functional properties of wild-type, mutants and E. coli enzymes. Eur J Biochem 267:7015–7023PubMedCrossRefGoogle Scholar
  13. Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330PubMedCrossRefGoogle Scholar
  14. Kilbourn JP (1978) Bacterial content and ionic composition of sputum in cystic fibrosis. Lancet 311:334CrossRefGoogle Scholar
  15. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  16. Lamark T, Kaasen EM, Eshoo W, Falkenberg P, McDougall J, Strøm AR (1991) DNA sequence and analysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli. Mol Microbiol 5:1049–1064PubMedCrossRefGoogle Scholar
  17. Lamark T, Røkenes TP, Mcdougall J, Strøm AR (1996) The complex bet promoters of Escherichia coli: regulation by oxygen (ArcA), choline (BetI), and osmotic stress. J Bacteriol 178:1655–1662PubMedGoogle Scholar
  18. Levering PR, van Dijken JP, Veenhius M, Harder W (1981) Arthrobacter P1, a fast growing versatile methylotroph with amine oxidase as a key enzyme in the metabolism of methylated amines. Arch Microbiol 129:72–80PubMedCrossRefGoogle Scholar
  19. Lisa TA, Casale CH, Domenech CE (1994) Cholinesterase, acid phosphatase, and phospholipase C of Pseudomonas aeruginosa under hyperosmotic conditions in a high-phosphate medium. Curr Microbiol 28:71–76CrossRefGoogle Scholar
  20. Mandon K, Østerås M, Boncompagni E, Trinchant JC, Spennato G, Poggi MC, Le Redulier D (2003) The Sinorhizobium meliloti glycine betaine biosynthetic genes (betICBA) are induced by choline and highly expressed in bacteroids. Mol Plant Microbe Interact 16:709–719PubMedCrossRefGoogle Scholar
  21. Meskys R, Harris RJ, Casaite V, Basran J, Scruton NS (2001) Organization of the genes involved in dimethylglycine and sarcosine degradation in Arthrobacter spp. Implications for glycine betaine catabolism. Eur J Biochem 268:3390–3398PubMedCrossRefGoogle Scholar
  22. Miller JH (1977) Experiments in molecular genetics, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 431–435Google Scholar
  23. Nagasawa T, Kawabata Y, Tani Y, Ogata. K (1976) Purification and characterization of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa A-16. Agric Biol Chem 40:1743–1749Google Scholar
  24. Ostroff RM, Wretlind B, Vasil ML (1989) Identification of a new phospholipase C activity by analysis of an insertional mutation in the hemolytic phospholipase C structural gene of Pseudomonas aeruginosa. J Bacteriol 169:4597–4601Google Scholar
  25. Pesin SR, Candia OA (1982) Acetylcholine concentration and its role in ionic transport by the corneal epithelium. Invest Ophtalmol Vis Sci 22:651–659Google Scholar
  26. Pocard J-A, Vincent N, Boncompagni E, Smith LT, Poggi MC, Le Rudulier D (1997) Molecular characterization of the bet genes encoding glycine betaine synthesis in Sinorhizobium meliloti 102F34. Microbiology 143:1369–1379PubMedCrossRefGoogle Scholar
  27. Rathinasabapathi B, McCue KF, Gage DA, Hanson AD (1996) Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta 193:155–152Google Scholar
  28. Rennick BR (1981) Renal tubule transport of organic ions. Am J Physiol 240:F83–F89PubMedGoogle Scholar
  29. Røkenes TP, Lamark T, Strøm AR (1996) DNA-binding properties of the BetI repressor protein of Escherichia coli: the inducer choline stimulates BetI-DNA complex formation. J Bacteriol 178:1663–1670Google Scholar
  30. Sage AE, Vasil AI, Vasil ML (1997) Molecular characterization of mutants affected in the osmoprotectant-dependent induction of phospholipase C in Pseudomonas aeruginosa. Mol Microbiol 23:43–56PubMedCrossRefGoogle Scholar
  31. Serra AL, Mariscotti JF, Barra JL, Lucchesi GI, Domenech CE, Lisa AT (2002) Glycine betaine transmethylase mutant of Pseudomonas aeruginosa. J Bacteriol 184:4301–4303PubMedCrossRefGoogle Scholar
  32. Shortridge VD, Lazdunski A, Vasil ML (1992) Osmoprotectants and phosphate regulate expression of phospholipase C in Pseudomonas aeruginosa. Mol Microbiol 6:863–871PubMedCrossRefGoogle Scholar
  33. Smith LT, Pocard JA, Bernard T, Le Rudulier D (1988) Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti. J Bacteriol 170:3142–3149PubMedGoogle Scholar
  34. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from acrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4353PubMedCrossRefGoogle Scholar
  35. Valenzuela-Soto EM, Muñoz-Clares RA (1994) Purification and properties of betaine aldehyde dehydrogenase extracted from detached leaves of Amaranthus hypochondriacus L. subjected to water deficit. J Plant Physiol 143:145–152Google Scholar
  36. Valenzuela-Soto EM, Velasco-Garcia R, Mújica-Jiménez C, Muñoz-Clares RA. (2003) Monovalent cations requirements for the stability of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa, amaranth leaves and porcine kidney. Chem-Biol Interact 143–144:139–148PubMedCrossRefGoogle Scholar
  37. Velasco-García R, González-Segura L, Muñoz-Clares RA (2000) Steady-state kinetic mechanism of NADP+- and NAD+-dependent reactions catalyzed by betaine aldehyde dehydrogenase from Pseudomonas aeruginosa. Biochem J 352:675–683PubMedCrossRefGoogle Scholar
  38. Velasco-García R., Mújica-Jiménez C, Mendoza-Hernández G, Muñoz-Clares RA (1999) Rapid purification and properties of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa. J Bacteriol 181:1292–1300PubMedGoogle Scholar
  39. Welsh DT (2000) Ecological significance of compatible solute accumulation by micro-organisms: From single cells to global climate. FEMS Microbiol Rev 24:263–290PubMedCrossRefGoogle Scholar
  40. Wright JR, Clements JA (1987) Metabolism and turnover of lung surfactant. Am Rev Respir Dis 136:426–444PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Roberto Velasco-García
    • 1
  • Miguel Angel Villalobos
    • 2
  • Miguel A. Ramírez-Romero
    • 3
  • Carlos Mújica-Jiménez
    • 4
  • Gabriel Iturriaga
    • 5
  • Rosario A. Muñoz-Clares
    • 4
    Email author
  1. 1.Laboratorio de Osmorregulación, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoMéxicoMexico
  2. 2.Programa de Genómica Funcional de Procariotes, Centro de Ciencias GenómicasUniversidad Nacional Autónoma de MéxicoMéxicoMexico
  3. 3.Programa de Genómica Evolutiva, Centro de Ciencias GenómicasUniversidad Nacional Autónoma de MéxicoMéxicoMexico
  4. 4.Departamento de Bioquímica, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMéxicoMexico
  5. 5.Departamento de Biotecnología Ambiental, Centro de Investigación en BiotecnologíaUniversidad Autónoma del Estado de MorelosMéxicoMexico

Personalised recommendations