Archives of Microbiology

, Volume 184, Issue 3, pp 187–193 | Cite as

Production of volatile organic compounds (VOCs) by yeasts isolated from the ascocarps of black (Tuber melanosporum Vitt.) and white (Tuber magnatum Pico) truffles

  • Pietro Buzzini
  • Chiara Gasparetti
  • Benedetta Turchetti
  • Maria Rita Cramarossa
  • Ann Vaughan-Martini
  • Alessandro Martini
  • Ugo Maria Pagnoni
  • Luca Forti
Original Paper


Twenty-nine yeast strains were isolated from the ascocarps of black and white truffles (Tuber melanosporum Vitt. and Tuber magnatum Pico, respectively), and identified using a polyphasic approach. According to the conventional taxonomic methods, MSP-PCR fingerprinting and sequencing of the D1/D2 domain of 26S rDNA, the strains were identified as Candida saitoana, Debaryomyces hansenii, Cryptococcus sp., Rhodotorula mucilaginosa, and Trichosporon moniliiforme. All isolates assimilated l-methionine as a sole nitrogen source and produced the volatile organic compounds (VOCs), 2-methyl butanol, 3-methyl butanol, methanethiol, S-methyl thioacetate, dimethyl sulfide, dimethyl disulfide, dimethyl trisulfide, dihydro-2-methyl-3(2H)-thiophenone and 3-(methylthio)-1-propanol (MTP). ANOVA analysis of data showed significant (P<0.01) differences in VOCs produced by different yeasts, with MTP as the major component (produced at concentrations ranging from 19.8 to 225.6 mg/l). In addition, since some molecules produced by the isolates of this study are also characteristic of truffle complex aroma, it is possible to hypothesize a complementary role of yeasts associated with this ecosystem in contributing to final Tuber spp. aroma through the independent synthesis of yeast-specific volatile constituents.


VOC producing yeasts Black and white truffles Aroma Tubermelanosporum Vitt. Tubermagnatum Pico 



Authors are grateful to Prof. I. Spencer-Martins and to Dr. Gabriella Giménez Jurado of the Centro de Recursos Microbiológicos (CREM), Secção Autónoma de Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (Portugal) for the their technical assistance in the course of molecular identification, and to M. Milito for her appreciable work in the course of this study.


  1. Ahmed AA, Mohamed MA, Hami MA (1981) Lybian truffles Terfezia boudieri Chatin: chemical composition and toxicity. J Food Sci 46:927–929CrossRefGoogle Scholar
  2. Al-Delaimy KS (1977) Protein and amino acid composition of truffle. Can Inst Food Sci Technol J 10:211–222Google Scholar
  3. Aoki T, Uchida K (1991) Enhanced formation of 3-(methylthio)-1-propanol in a salt-tolerant yeast, Zygosaccharomyces rouxii, due to deficiency of S-adenosylmethionine synthase. Agric Biol Chem 55:2113–2116Google Scholar
  4. Arfi K, Tâche R, Spinnler HE, Bonnarme P (2003) Dual influence of the carbon source and l-methionine on the synthesis of sulfur compounds in the cheese-ripening yeast Geotrichum candidum. Appl Microbiol Biotechnol 61:359–365PubMedGoogle Scholar
  5. Bacilio-Jimenez M, Aguilar-Flores S, Ventura-Zapata E, Pérez-Campos E, Bouquelet S, Zenteno E (2003) Chemical characterization of root exudates from rice (Oryza sativa) and their effect on the chemotactic response of endophytic bacteria. Plant Soil 249:271–277CrossRefGoogle Scholar
  6. Berger C, Khan JA, Molimard P, Martin N, Spinnler HE (1999) Production of sulfur flavours by ten strains of Geotrichum candidum. Appl Environm Microbiol 65:5510–5514Google Scholar
  7. Bokhary HA, Parvez S (1993) Chemical composition of desert truffles Terfezia claveryi. J Food Comp Anal 6:285–293CrossRefGoogle Scholar
  8. Bonnarme P, Arfi K, Dury C, Helinck S, Yvon M, Spinnler HE (2001a) Sulfur compound production by Geotrichum candidum from l-methionine: importance of the transaminase step. FEMS Microbiol Lett 205:247–252CrossRefPubMedGoogle Scholar
  9. Bonnarme P, Lapadatescu C, Yvon M, Spinnler HE (2001b) l-methionine: degradation potentiality of cheese-ripening microorganisms. J Dairy Res 68:663–674CrossRefPubMedGoogle Scholar
  10. Buzzini P, Martini A, Cappelli F, Pagnoni UM, Davoli P (2003a) A study on volatile organic compounds (VOCs) produced by tropical ascomycetous yeasts. Antonie van Leeuwenhoek 84:301–311CrossRefPubMedGoogle Scholar
  11. Buzzini P, Martini A, Pagnoni UM, Davoli P (2003b) Production of flavored volatile organic compounds (VOCs) by Candida oleophila GK10. Optimization using factorial design and response surface analysis. Enzyme Microb Technol 33:668–675CrossRefGoogle Scholar
  12. Buzzini P, Romano S, Turchetti B, Vaughan A, Pagnoni UM, Davoli P (2005) Production of volatile organic sulfur compounds (VOSCs) by basidiomycetous yeasts. FEMS Yeast Res 5:379–385CrossRefPubMedGoogle Scholar
  13. Chin HW, Lindsay RC (1994) Ascorbate and transition-metal mediation of methanethiol oxidation to dimethyl disulfide and dimethyl trisulfide. Food Chem 49:387–392CrossRefGoogle Scholar
  14. Cheetham PJS (1997) Combining the technical push and business pull for natural flavours. Adv Biochem Eng Biotechnol 55:1–49Google Scholar
  15. Coli R, Maurizi Coli A, Granetti B, Damiani P (1990) Chemical composition and nutritive value of black truffle (Tuber melanosporum Vitt.) and white truffle (Tuber magnatum Pico) collected in Umbria (Italy). Proc II Int Congr on Truffles, Spoleto (Italy), CM MMS, Perugia (Italy), pp511–516Google Scholar
  16. Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low nutrient environments. Plant Soil 245:35–47CrossRefGoogle Scholar
  17. Diriye FU, Scorzetti G, Martini A (1993) Methods for the separation of yeast cells from the surfaces of processed frozen foods. Int J Food Microbiol 19:27–30CrossRefPubMedGoogle Scholar
  18. Duponnois R, Garbaye J (1990) Some mechanisms involved in growth stimulation of ectomycorrhizal fungi by bacteria. Can J Bot 68:2148–2152Google Scholar
  19. Endrizzi A, Pagot Y, Le Clainche A, Nicaud JM, Belin JM (1996) Production of lactones and peroxisomal beta-oxidation in yeasts. Crit Rev Biotechnol 16:301–329PubMedCrossRefGoogle Scholar
  20. Frey-Klett P, Churin JL, Pierrat JC, Garbaye J (1999) Dose effect in the dual inoculation of an ectomycorrhizal fungus and a mycorrhiza helper bacterium in two forest nurseries. Soil Biol Biochem 31:1555–1562CrossRefGoogle Scholar
  21. Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210CrossRefGoogle Scholar
  22. Garbaye J, Bowen GD (1989) Stimulation of ectomycorrhizal infection of Pinus radiata by microorganisms associated with the mantle of ectomycorrhizas. New Phytol 112:383–388CrossRefGoogle Scholar
  23. Helinck S, Spinnler HE, Parayre S, Dame-Cahagne M, Bonnarme P (2000) Enzymatic versus spontaneous S-methyl thioester synthesis in Geotrichum candidum. FEMS Microbiol Lett 193:237–241CrossRefPubMedGoogle Scholar
  24. Jaeger CH III, Lindow SE, Miller W, Clark E, Firestone MK (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environm Microbiol 65:2585–2690Google Scholar
  25. Lipson DA, Raab TK, Schmidt SK, Monson RK (2001) An empirical model of amino acid transformation in an alpine soil. Soil Biol Biochem 33:189–198CrossRefGoogle Scholar
  26. Marletto F (1969) La microflora della rizosfera delle tartufaie. I. I blastomiceti dei tartufi e della rizosfera delle tartufaie. Allionia 15:155–171Google Scholar
  27. Martin N, Berger C, Le Du C, Spinnler HE (2001) Aroma compounds production in cheese curd by co-culturing with selected yeasts and bacteria. J Dairy Sci 84:2125–2135PubMedCrossRefGoogle Scholar
  28. Mestres M, Busto O, Guasch J (2000) Analysis of organic sulfur compounds in wine aroma. J Chromatrogr 881:569–581CrossRefGoogle Scholar
  29. Meyer W, Mitchell TG, Freedman EZ, Vilgalys R (1993) Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans. J Clin Microbiol 31:2274–2280PubMedGoogle Scholar
  30. Moreira N, Mendes F, Pereira O, Guedes de Pinho P, Hogg T, Vasconcelos I (2002) Volatile sulphur compounds in wines related to yeast metabolism and nitrogen composition of grape musts. Anal Chim Acta 458:157–167CrossRefGoogle Scholar
  31. Murcia MA, Martinez-Tomé M, Vera A, Morte A, Gutierrez A, Honrubia M, Jimenez AM (2003) Effect of industrial processing on dessert truffles Terfezia claveryi Chatin and Picoa juniperii Vittadini: proximate composition and fatty acids. J Sci Food Agric 83:535–541CrossRefGoogle Scholar
  32. Ozino Marletto O, Sartoris A (1978) Studi sull’ecologia del Tuber melanosporum. V. La blastoflora delle aree bruciate nell’Italia centrale. Allionia 23:91–94Google Scholar
  33. Pelusio F, Nilsson T, Montanarella L, Tilio R, Larsen B, Facchetti S, Madsen JO (1995) Headspace solid-phase microextraction analysis of volatile organic sulfur compounds in black and white truffle aroma. J Agric Food Chem 43:2138–2143CrossRefGoogle Scholar
  34. Phaff HJ, Starmer WT (1987) Yeasts associated with plants, insects and soils. In: Rose AH, Harrison JS (eds) The Yeasts. Academic , London, pp.123–180Google Scholar
  35. Read D (1991) Mycorrhizas in ecosystems. Experimentia 47:376–391CrossRefGoogle Scholar
  36. Rojas V, Gil JG, Pinaga F, Manzanares P (2001) Studies on acetate ester production by non-Saccharomyces wine yeasts. Int J Food Microbiol 70:283–289CrossRefPubMedGoogle Scholar
  37. Romano P, Suzzi G, Domizio P, Fatichenti F (1997) Secondary products formation as a tool for discriminating non-Saccharomyces wine strains. Antonie van Leeuwenhoek 71:239–242CrossRefPubMedGoogle Scholar
  38. Rovira AD (1969) Plant root exudates. Bot Rev 35:35–57Google Scholar
  39. Sampaio JP, Gadanho M, Santos S, Duarte F, Pais C, Fonseca A, Fell JW (2001) Polyphasic taxonomy of the basisdiomycetous yeast genus Rhodosporidium: Rhodosporidium kratochvilovae and related anamorphic species. Int J Syst Evol Microbiol 51:687–697PubMedGoogle Scholar
  40. Schreier P, Drawert F, Junker A, Barton H, Leupold G (1976) Biosynthesis of aroma compounds by microorganisms. II. Formation of sulfur compounds from methionine by Saccharomyces cerevisiae. Zeitschrift fuer Lebensmittel-Untersuchung und Forschung 162:279–284CrossRefGoogle Scholar
  41. Spinnler HE, Berger C, Lapadatescu C, Bonnarme P (2001) Production of sulfur compounds by several yeasts of technological interest for cheese ripening. Int Dairy J 11:245–252CrossRefGoogle Scholar
  42. Torner MJ, Martinez-Anaya MA, Antuna B, Benedito de Barber C (1992) Headspace flavour compounds produced by yeasts and lactobacilli during fermentation of preferments and bread doughs. Int J Food Microbiol 15:145–152CrossRefPubMedGoogle Scholar
  43. Wache Y, Aguedo M, Choquet A, Gatfield IL, Nicaud JM, Belin JM (2001) Role of beta-oxidation enzymes in gamma-decalactone production by the yeast Yarrowia lipolytica. Appl Environ Microbiol 67:5700–5704PubMedCrossRefGoogle Scholar
  44. Yang Mei C (2001) Truffles in Southwest China. Proc V Int Congr on Truffles, Aix-en-Provance (France), FFT IPSO, Marseille (France), pp248–249Google Scholar
  45. Yarrow D (1998) Methods for the isolation, maintenance and identification of yeasts. In: CP Kurtzman JW Fell (eds), The yeasts. A taxonomic study. Elsevier, Amsterdam, pp 77–100Google Scholar
  46. Zacchi L, Vaughan-Martini A, Angelini P (2003) Yeast distribution in a truffle-field ecosystem. Ann Microbiol 53:275–282Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Pietro Buzzini
    • 1
  • Chiara Gasparetti
    • 1
  • Benedetta Turchetti
    • 1
  • Maria Rita Cramarossa
    • 2
  • Ann Vaughan-Martini
    • 1
  • Alessandro Martini
    • 1
  • Ugo Maria Pagnoni
    • 2
  • Luca Forti
    • 2
  1. 1.Dipartimento di Biologia Vegetale e Biotecnologie Agroambientali, Sezione di Microbiologia ApplicataUniversità di PerugiaPerugiaItaly
  2. 2.Dipartimento di ChimicaUniversità di Modena e Reggio EmiliaModenaItaly

Personalised recommendations