Archives of Microbiology

, Volume 184, Issue 4, pp 199–206 | Cite as

Insights into the microbial world associated with ants

  • Evelyn Zientz
  • Heike Feldhaar
  • Sascha Stoll
  • Roy Gross
Mini-Review

Abstract

Insects are among the most successful animals of the world in terms of species richness as well as abundance. Their biomass exceeds that of mammals by far. Among insects, ants are of particular interest not only because of their enormous ecological role in many terrestrial ecosystems, but also because they have developed an impressive behavioural repertoire. In fact, a key feature of the evolutionary success of ants is their ability to form complex societies with division of labour among individuals in a colony belonging to different castes such as workers and soldiers. In addition to these complex social interactions of ants, they have shown an extraordinary capacity to build up close associations with other organisms such as other insects, plants, fungi and bacteria. In the present review we attempt to provide an overview of the various symbiotic interactions that ants have developed with microorganisms.

Keywords

Symbiosis Ants Blochmannia Bartonella Wolbachia Tetraponera Camponotus Atta Bacteriocyte Actinomycete 

References

  1. Aanen DK, Eggleton P, Rouland-Lefevre C, Guldberg-Froslev T, Rosendahl S, Boomsma JJ (2002) The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc Natl Acad Sci USA 99:14887–14892CrossRefPubMedGoogle Scholar
  2. Akman L, Yamashita A, Watanabe H, Oshima K, Shiba T, Hattori M, Aksoy S (2002) Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat Genet 32:402–407CrossRefPubMedGoogle Scholar
  3. Baumann P, Baumann L, Lai CY, Rouhbakhsh D, Moran NA, Clark MA (1995) Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annu Rev Microbiol 49:55–94CrossRefPubMedGoogle Scholar
  4. Belda E, Moya A, Silva FJ (2005) Genome rearrangement distances and gene order phylogeny in gamma-Proteobacteria. Mol Biol Evol 22:1456–1467CrossRefPubMedGoogle Scholar
  5. Blochmann F (1892) Über das Vorkommen von bakterienähnlichen Gebilden in den Geweben und Eiern verschiedener Insekten. Zentbl Bakteriol 11:234–240Google Scholar
  6. Blüthgen N, Gebauer G, Fiedler K (2003) Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community. Oecologia 137:426–435CrossRefPubMedGoogle Scholar
  7. Boursaux-Eude C, Gross R (2000) New insights into symbiotic associations between ants and bacteria. Res Microbiol 151:513–519CrossRefPubMedGoogle Scholar
  8. Brune A, Friedrich M (2000) Microecology of the termite gut: structure and function on a microscale. Curr Opin Microbiol 3:263–269CrossRefPubMedGoogle Scholar
  9. Buchner P (1965) Endosymbiosis of animals with plant microorganisms. John Wiley New YorkGoogle Scholar
  10. Canback B, Tamas I, Andersson SG (2004) A phylogenomic study of endosymbiotic bacteria. Mol Biol Evol 21:1110–1122CrossRefPubMedGoogle Scholar
  11. Charlat S, Hurst GDD, Mercot H (2003) Evolutionary consequences of Wolbachia infections. Trends Genet 19:217–223CrossRefPubMedGoogle Scholar
  12. Chen X, Li S, Aksoy S (1999) Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglesworthia glossinidia. J Mol Evol 48:49–58PubMedCrossRefGoogle Scholar
  13. Currie RC (2001) A community of ants, fungi, and bacteria: a multilateral approach to studying symbiosis. Annu Rev Microbiol 55:357–380CrossRefPubMedGoogle Scholar
  14. Currie RC, Mueller UG, Malloch D (1999a) The agricultural pathology of ant fungus gardens. Proc Natl Acad Sci USA 96:7998–8002CrossRefGoogle Scholar
  15. Currie RC, Scott JA, Summerbell RC, Malloch D (1999b) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701–704CrossRefGoogle Scholar
  16. Currie RC, Scott JA, Summerbell RC, Malloch D (2003a) Corrigendum. Nature 423:461CrossRefGoogle Scholar
  17. Currie RC, Wong B, Stuart AE, Schultz TR, Rehner SA, Mueller UG, Sung GH, Spatafora JW, Straus NA (2003b) Ancient tripartite coevolution in the attine ant-microbe symbiosis. Science 299:386–388CrossRefGoogle Scholar
  18. Dale C, Maudlin I (1999) Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. Int J Syst Bacteriol 49:267–275PubMedCrossRefGoogle Scholar
  19. Dasch GA, Weiss E, Chang KP (1984) Endosymbionts of insects. In: Krieg NR (ed) Bergeys manual of systematic bacteriology vol. 1, Williams & Williams, Baltimore, pp 881–883Google Scholar
  20. Davidson DW, Cook SC, Snelling RR, Chua TH (2003) Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300:969–972CrossRefPubMedGoogle Scholar
  21. Dedeine F, Ahrens M, Calcaterra L, Shoemaker DD (2005) Social parasitism in fire ants (Solenopsis spp.): a potential mechanism for interspecies transfer of Wolbachia. Mol Ecol 14:1543–1548CrossRefPubMedGoogle Scholar
  22. Degnan PH, Lazarus AB, Brock CD, Wernegreen JJ (2004) Host-symbiont stability and fast evolutionary rates in an ant-bacterium association: cospeciation of camponotus species and their endosymbionts, candidatus Blochmannia. Syst Biol 53:95–110CrossRefPubMedGoogle Scholar
  23. Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37CrossRefPubMedGoogle Scholar
  24. Fialho RF, Stevens L (2000) Male-killing Wolbachia in a flour beetle. Proc Biol Sci 267:1469–1473CrossRefPubMedGoogle Scholar
  25. Fry AJ, Wernegreen JJ (2005) The roles of positive and negative selection in the molecular evolution of insect endosymbionts. Gene 355:1–10CrossRefPubMedGoogle Scholar
  26. Funk DJ, Helbling L, Wernegreen JJ, Moran NA (2000) Intraspecific phylogenetic congruence among multiple symbiont genomes. Proc Biol Sci 267:2517–2521PubMedCrossRefGoogle Scholar
  27. Gil R, Sabater-Munoz B, Latorre A, Silva FJ, Moya A (2002) Extreme genome reduction in Buchnera spp.: toward the minimal genome needed for symbiotic life. Proc Natl Acad Sci USA 99:4454–4458CrossRefPubMedGoogle Scholar
  28. Gil R, Silva FJ, Zientz E, Delmotte F, Gonzalez-Candelas F, Latorre A, Rausell C, Kamerbeek J, Gadau J, Hölldobler B, van Ham RC, Gross R, Moya A (2003) The genome sequence of Blochmannia floridanus: comparative analysis of reduced genomes. Proc Natl Acad Sci USA 100:9388–9393CrossRefPubMedGoogle Scholar
  29. Gil R, Latorre A, Moya A (2004) Bacterial endosymbionts of insects: insights from comparative genomics. Env Microbiol 6:1109–1122CrossRefGoogle Scholar
  30. Goebel W, Gross R (2001) Intracellular survival strategies of mutualistic and parasitic prokaryotes. Trends Microbiol 9:267–273CrossRefPubMedGoogle Scholar
  31. van Ham RC, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U, Fernandez JM, Jimenez L, Postigo M, Silva FJ, Tamames J, Viguera E, Latorre A, Valencia A, Moran F, Moya A (2003) Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci USA 100:581–586CrossRefPubMedGoogle Scholar
  32. Hinkle G, Wetterer JK, Schultz TR, Sogin ML (1994) Phylogeny of the attine ant fungi based on analysis of small subunit ribosomal RNA gene sequences. Science 266:1695–1697PubMedCrossRefGoogle Scholar
  33. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, CambridgeGoogle Scholar
  34. Hurst GD, Johnson AP, Schulenburg JH, Fuyama Y (2000) Male-killing Wolbachia in Drosophila: a temperature-sensitive trait with a threshold bacterial density. Genetics 156: 699–709PubMedGoogle Scholar
  35. Jones KG, Blackwell M (1998) Phylogenetic analysis of ambrosial species in the genus Raffaelea based on 18S rDNA sequences. Mycol Res 102:661–665CrossRefGoogle Scholar
  36. Keller L, Liautard C, Reuter M, Brown WD, Sundstrom L, Chapuisat M (2001) Sex ratio and Wolbachia infection in the ant Formica exsecta. Heredity 87:227–233CrossRefPubMedGoogle Scholar
  37. McGraw EA, O’Neill SL (2004) Wolbachia pipientis: intracellular infection and pathogenesis in Drosophila. Curr Opin Microbiol 7:67–70CrossRefPubMedGoogle Scholar
  38. Mira A, Moran NA (2002) Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria. Microb Ecol 44:137–143CrossRefPubMedGoogle Scholar
  39. Nogge G (1982) Significance of symbionts for the maintenance of an optimal nutrition state for successful reproduction in hematophagous arthropods. Parasitology 82:101–104Google Scholar
  40. Ohkuna M, Kudo T (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl Environ Microbiol 62:461–468Google Scholar
  41. Poulsen M, Boomsma JJ (2005) Mutualistic fungi control crop diversity in fungus-growing ants. Science 307:741–744PubMedCrossRefGoogle Scholar
  42. Reuter M, Pedersen JS, Keller L (2005) Loss of Wolbachia infection during colonisation in the invasive Argentine ant Linepithema humile. Heredity 94:364–369CrossRefPubMedGoogle Scholar
  43. Rigaud T, Pennings PS, Juchault P (2001) Wolbachia bacteria effects after experimental interspecific transfers in terrestrial isopods. J Invertebr Pathol 77:251–257CrossRefPubMedGoogle Scholar
  44. Sameshima S, Hasegawa E, Kitade O, Minaka N, Matsumoto T (1999) Phylogenetic comparison of endosymbionts with their host ants based on molecular evidence. Zool Sci 16:993–1000CrossRefGoogle Scholar
  45. Sauer C, Stackebrandt E, Gadau J, Hölldobler B, Gross R (2000) Systematic relationships and cospeciation of bacterial endosymbionts and their carpenter ant host species: proposal of the new taxon Candidatus Blochmannia gen. nov. Int J Syst Evol Microbiol 5:1877–1886Google Scholar
  46. Sauer C, Dudaczek D, Hölldobler B, Gross R (2002) Tissue localization of the endosymbiotic bacterium " Candidatus Blochmannia floridanus" in adults and larvae of the carpenter ant Camponotus floridanus. Appl Environ Microbiol 68:4187–4193PubMedCrossRefGoogle Scholar
  47. Schröder D, Deppisch H, Obermayer M, Krohne G, Stackebrandt E, Holldobler B, Goebel W, Gross R (1996) Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization. Mol Microbiol 21:479–489PubMedCrossRefGoogle Scholar
  48. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407:81–86CrossRefPubMedGoogle Scholar
  49. Shoemaker DD, Ross KG, Keller L, Vargo EL, Werren JH (2000) Wolbachia infections in native and introduced populations of fire ants (Solenopsis spp.). Insect Mol Biol 9:661–673CrossRefPubMedGoogle Scholar
  50. Stoll S (2005) Die Bakterien der spezifischen Darmflora in den Ameisengattungen Camponotus und Tetraponera. Diploma Thesis, University of WürzburgGoogle Scholar
  51. Stouthamer R, Breeuwer JAJ, Hurst GDD (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53:71–102CrossRefPubMedGoogle Scholar
  52. Tamas I, Klasson L, Canback B, Naslund AK, Eriksson AS, Wernegreen JJ, Sandstrom JP, Moran NA, Andersson SG (2002) 50 million years of genomic stasis in endosymbiotic bacteria. Science 296:2376–2379PubMedCrossRefGoogle Scholar
  53. Van Borm S, Wenseleers T, Billen J, Boomsma JJ (2002a) Cloning and sequencing of wsp encoding gene fragments reveals a diversity of co-infecting Wolbachia strains in Acromyrmex leafcutter ants. Mol Phylogenet Evol 26:102–109CrossRefGoogle Scholar
  54. Van Borm S, Buschinger A, Boomsma JJ, Billen J (2002b) Tetraponera ants have gut symbionts related to nitrogen-fixing rood-nodule bacteria. Proc R Soc Lond B 269:2023–2027CrossRefGoogle Scholar
  55. Wenseleers T, Billen J (2000) No evidence for Wolbachia-induced parthenogenesis in the social Hymenoptera. J Evol Biol 13:277–280CrossRefGoogle Scholar
  56. Wenseleers T, Ito F, Van Borm S, Huybrechts R, Volckaert F, Billen J (1998) Widespread occurrence of the microorganism Wolbachia in ants. Proc R Soc Lond B 265:1447–1452CrossRefGoogle Scholar
  57. Wenseleers T, Sundström L, Billen J (2002) Deleterious Wolbachia in the ant Formica truncorum. Proc Biol Sci 269:623–629CrossRefPubMedGoogle Scholar
  58. Wernegreen JJ (2002) Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet 3:850–861CrossRefPubMedGoogle Scholar
  59. Wolschin F, Hölldobler B, Gross R, Zientz E (2004) Replication of the endosymbiotic bacterium Blochmannia floridanus is correlated with the developmental and reproductive stages of its ant host. Appl Environ Microbiol 70:4096–4102PubMedCrossRefGoogle Scholar
  60. Zientz E, Silva FJ, Gross R (2001) Genome interdependence in insect-bacterium symbioses. Genome Biol 2:REVIEWS1032Google Scholar
  61. Zientz E, Dandekar T, Gross R (2004) Metabolic interdepence of obligate intracellular bacteria and their insect hosts. Microbiol Mol Biol Rev 68:745–770CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Evelyn Zientz
    • 1
  • Heike Feldhaar
    • 2
  • Sascha Stoll
    • 1
  • Roy Gross
    • 1
  1. 1.Lehrstuhl für MikrobiologieBiozentrum, Universität WürzburgWürzburgGermany
  2. 2.Lehrstuhl für Soziobiologie und VerhaltensphysiologieBiozentrum der Universität WürzburgWürzburgGermany

Personalised recommendations