Archives of Microbiology

, Volume 183, Issue 1, pp 27–36 | Cite as

The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1

  • Ralf RabusEmail author
  • Michael Kube
  • Johann Heider
  • Alfred Beck
  • Katja Heitmann
  • Friedrich Widdel
  • Richard Reinhardt
Original Paper


Recent research on microbial degradation of aromatic and other refractory compounds in anoxic waters and soils has revealed that nitrate-reducing bacteria belonging to the Betaproteobacteria contribute substantially to this process. Here we present the first complete genome of a metabolically versatile representative, strain EbN1, which metabolizes various aromatic compounds, including hydrocarbons. A circular chromosome (4.3 Mb) and two plasmids (0.21 and 0.22 Mb) encode 4603 predicted proteins. Ten anaerobic and four aerobic aromatic degradation pathways were recognized, with the encoding genes mostly forming clusters. The presence of paralogous gene clusters (e.g., for anaerobic phenylacetate oxidation), high sequence similarities to orthologs from other strains (e.g., for anaerobic phenol metabolism) and frequent mobile genetic elements (e.g., more than 200 genes for transposases) suggest high genome plasticity and extensive lateral gene transfer during metabolic evolution of strain EbN1. Metabolic versatility is also reflected by the presence of multiple respiratory complexes. A large number of regulators, including more than 30 two-component and several FNR-type regulators, indicate a finely tuned regulatory network able to respond to the fluctuating availability of organic substrates and electron acceptors in the environment. The absence of genes required for nitrogen fixation and specific interaction with plants separates strain EbN1 ecophysiologically from the closely related nitrogen-fixing plant symbionts of the Azoarcus cluster. Supplementary material on sequence and annotation are provided at the Web page


Complete genome Anaerobic degradation Aromatic compounds Denitrifying bacterium Betaproteobacteria 



We acknowledge Katja Borzym, Ines Müller, Janina Thiel, Susan Böhm, Sven Klages, Beatrice Baumann, Daniela Gröger, Verena Gimmel, Mario Sontag, Maximilian Weiss (Berlin) and Daniela Lange (Bremen) for technical assistance, and Dirk Jacobs (Berlin) for computational support with the HTGA system. This study was supported by the Max Planck Society.

Supplementary material

General Genome Features Text and Tables

General Genome Features Figures

Cellular Functions Text and Tables

Metabolic Functions Text and Tables

Metabolic Functions Figures

Other Functions Text and Tables


Supporting7_References.pdf (214 kb)
(PDF 214 KB)


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nuc Acids Res 25:3389–3402CrossRefGoogle Scholar
  2. Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, Bucher P, Cerutti L, Corpet F, Croning MDR, Durbin R, Falquet L, Fleischmann W, Gouzy J, Hermjakob H, Hulo N, Jonassen I, Kahn D, Kanapin A, Karavidopoulou Y, Lopez R, Marx B, Mulder NJ, Oinn TM, Pagni M, Servant F, Sigrist CJA, Zdobnov EM (2001) The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucl Acids Res 29:37–40CrossRefPubMedGoogle Scholar
  3. Baxevanis AD (2002) The molecular biology database collection: 2002 update. Nuc Acids Res 30:1–12CrossRefGoogle Scholar
  4. Boll M, Fuchs G, Meier C, Trautwein A, El Kasmi A, Ragsdale SW, Buchanan G, Lowe DJ (2001) Redox centers of 4-hydroxybenzoyl-CoA reductase, a member of the xanthine oxidase family of molybdenum-containing enzymes. J Biol Chem 276:47853–47862PubMedGoogle Scholar
  5. Boll M, Fuchs G, Heider J (2002) Anaerobic oxidation of aromatic compounds and hydrocarbons. Curr Opin Chem Biol 6:604–611CrossRefPubMedGoogle Scholar
  6. Breinig S, Schiltz E, Fuchs G (2000) Genes involved in anaerobic metabolism of phenol in the bacterium Thauera aromatica. J Bacteriol 182:5849–5863CrossRefPubMedGoogle Scholar
  7. Brill WJ (1980) Biochemical genetics of nitrogen fixation. Microbiol Rev 44:449–467PubMedGoogle Scholar
  8. Buder R, Fuchs G, Langkau B, Ghisla S (1989) 2-Aminobenzoyl-CoA monooxygenase/reductase, a novel type of flavoenzyme. Studies on the stoichiometry and the course of the reaction. Eur J Biochem 185:637–643PubMedGoogle Scholar
  9. Dörr J, Hurek T, Reinhold-Hurek B (1998) Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol Microbiol 30:7–17CrossRefPubMedGoogle Scholar
  10. Egener T, Martin DE, Sarkar A, Reinhold-Hurek B (2001) Role of a ferredoxin gene cotranscribed with the nifHDK operon in N2 fixation and nitrogenase “switch-off” of Azoarcus sp. strain BH72. J Bacteriol 183:3752–3760CrossRefPubMedGoogle Scholar
  11. Egener T, Sarkar A, Martin DE, Reinhold-Hurek B (2002) Identification of a NifL-like protein in a diazotroph of the β-subgroup of the Proteobacteria, Azoarcus sp. strain BH72. Microbiology 148:3203–3212PubMedGoogle Scholar
  12. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194PubMedGoogle Scholar
  13. Ewing B, Hiller L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185PubMedGoogle Scholar
  14. Frishman D, Mironov A, Mewes H-W, Gelfand M (1998) Combining diverse evidence for gene recognition in completely sequenced bacterial genomes. Nucleic Acids Res 26:2941–2947CrossRefPubMedGoogle Scholar
  15. Gescher J, Zaar A, Mohamed M, Schägger H, Fuchs G (2002) Genes coding for a new pathway of aerobic benzoate metabolism in Azoarcus evansii. J Bacteriol 184:6301–6315CrossRefPubMedGoogle Scholar
  16. Gibson J, Harwood CS (2002) Metabolic diversity in aromatic compound utilization by anaerobic microbes. Annu Rev Microbiol 56:345–369CrossRefPubMedGoogle Scholar
  17. Harayama S, Kok M, Neidle EL (1992) Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol 46:565–601CrossRefPubMedGoogle Scholar
  18. Harwood CS, Burchardt G, Hermann H, Fuchs G (1999) Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol Rev 22:439–458CrossRefGoogle Scholar
  19. Hayes F (2003) Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301:1496–1499CrossRefPubMedGoogle Scholar
  20. Heider J, Fuchs G (1997) Anaerobic metabolism of aromatic compounds. Eur J Biochem 243:577–596CrossRefPubMedGoogle Scholar
  21. Heider J, Boll M, Breese K, Breinig S, Ebenau-Jehle C, Feil U, Gadón N, Laempe D, Leuthner B, Mohamed ME-S, Schneider S, Burchhardt G, Fuchs G (1998) Differential induction of enzymes involved in anaerobic metabolism of aromatic compounds in the denitrifying bacterium Thauera aromatica. Arch Microbiol 170:120–131CrossRefPubMedGoogle Scholar
  22. Hunte C, Palsdottir H, Trumpower BL (2003) Protonmotive pathways and mechanisms in the cytochrome bc1 complex. FEBS Lett 545:39–46CrossRefPubMedGoogle Scholar
  23. Ismail W, Mohamed ME, Wanner BL, Datsenko KA, Eisenreich W, Rohdich F, Bacher A, Fuchs G (2003) Functional genomics by NMR spectroscopy. Phenylacetate catabolism in Escherichia coli. Eur J Biochem 270:3047–3054CrossRefPubMedGoogle Scholar
  24. Körner H, Sofia HJ, Zumft WG (2003) Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 27:559–592CrossRefPubMedGoogle Scholar
  25. Kube M, Heider J, Amann J, Hufnagel P, Kühner S, Beck A, Reinhardt R, Rabus R (2004) Genes involved in the anaerobic degradation of toluene in a denitrifying bacterium, strain EbN1. Arch Microbiol 181:182–194CrossRefPubMedGoogle Scholar
  26. Kumagai H, Fujiwara T, Matsubara H, Saeki K (1997) Membrane localization, topology, and mutual stabilization of the rnfABC gene products in Rhodobacter capsulatus and implications for a new family of energy-coupling NADH oxidoreductases. Biochemistry 36:5509–5521CrossRefPubMedGoogle Scholar
  27. Kühner S, Wöhlbrand L, Fritz I, Wruck W, Hultschig C, Hufnagel P, Kube M, Reinhardt R, Rabus R (2004) Substrate-dependent regulation of anaerobic degradation pathways for toluene and ethylbenzene in a dentrifying bacterium, strain EbN1. J Bacteriol (in press)Google Scholar
  28. Laempe D, Jahn M, Breese K, Schägger H, Fuchs G (2001) Anaerobic metabolism of 3hydroxybenzoate by the denitrifying bacterium Thauera aromatica. J Bacteriol 183:968–979CrossRefPubMedGoogle Scholar
  29. Mohamed ME-S, Ismail W, Heider J, Fuchs G (2002) Aerobic metabolism of phenylacetic acids in Azoarcus evansii. Arch Microbiol 178:180–192CrossRefPubMedGoogle Scholar
  30. Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VAP, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen J, Timmis KN, Düsterhöft A, Tümmler B, Fraser CM (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808CrossRefPubMedGoogle Scholar
  31. Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6CrossRefGoogle Scholar
  32. Nudleman E, Kaiser D (2004) Pulling together with type IV pili. J Mol Microbiol Biotechnol 7:52–62CrossRefPubMedGoogle Scholar
  33. Pitcher RS, Brittain T, Watmough NJ (2002) Cytochrome cbb3 oxidase and bacterial microaerobic metabolism. Biochem Soc Trans 30:653–658CrossRefPubMedGoogle Scholar
  34. Rabus R, Widdel F (1995) Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol 163:96–103PubMedGoogle Scholar
  35. Rabus R, Widdel F (1996) Utilization of alkylbenzenes during anaerobic growth of pure cultures of denitrifying bacteria on crude oil. Appl Environ Microbiol 62:1238–1241Google Scholar
  36. Rabus R, Kube M, Beck A, Widdel F, Reinhardt R (2002) Genes involved in the anaerobic degradation of ethylbenzene in a denitrifying bacterium, strain EbN1. Arch Microbiol 178:506–516CrossRefPubMedGoogle Scholar
  37. Reinhold-Hurek B, Hurek T (2000) Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov. Int J Sys Evol Microbiol 50:649–659PubMedGoogle Scholar
  38. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream M-A, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945CrossRefPubMedGoogle Scholar
  39. Schühle K, Jahn M, Ghisla S, Fuchs G (2001) Two similar gene clusters coding for enzymes of a new type of aerobic 2-aminobenzoate (anthranilate) metabolism in the bacterium Azoarcus evansii. J Bacteriol 183:5268–5278CrossRefPubMedGoogle Scholar
  40. Schühle K, Gescher J, Feil U, Paul M, Jahn M, Schägger H, Fuchs G (2003) Benzoate-coenzyme A ligase from Thauera aromatica: an enzyme acting in anaerobic and aerobic pathways. J Bacteriol 185:4920–4929CrossRefPubMedGoogle Scholar
  41. Sluis MK, Larsen RA, Krum JG, Anderson R, Metcalf WW, Ensign SA (2002) Biochemical, molecular and genetic analyses of the acetone carboxylases from Xanthobacter autotrophicus strain Py2 and Rhodobacter capsulatus strain B10. J Bacteriol 184:2969–2977CrossRefPubMedGoogle Scholar
  42. Spormann AM, Widdel F (2000) Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11:85–105CrossRefPubMedGoogle Scholar
  43. Staden R, Beal KF, Bonfield JK (1999) The Staden Package, 1998. Computer methods in molecular biology. In: Misener S, Krawetz SA (eds) Bioinformatics methods and protocols. The Humana Press Inc., pp 115–130Google Scholar
  44. Stubbe JA, Ge J, Yee CS (2001) The evolution of ribonucleotide reduction revisited. Trends Biochem Sci 26:93–99CrossRefPubMedGoogle Scholar
  45. The Gene Ontology Consortium (2001) Creating the gene ontology resource: design and implementation. Genome Res 11:1425–1433Google Scholar
  46. Wackett LP, Hershberger CD (2001) Biocatalysis and biodegradation: microbial transformation of organic compounds. ASM Press, WashingtonGoogle Scholar
  47. Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276CrossRefPubMedGoogle Scholar
  48. Zaar A, Eisenreich W, Bacher A, Fuchs G (2001) A novel pathway of aerobic benzoate catabolism in the bacteria Azoarcus evansii and Bacillus stearothermophilus. J Biol Chem 276:24997–25004CrossRefPubMedGoogle Scholar
  49. Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616PubMedGoogle Scholar
  50. Zumft WG (2002) Nitric oxide signaling and NO dependent transcriptional control in bacterial denitrification by members of the FNR-CRP regulator family. J Mol Microbiol Biotechnol 4:277–286PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Ralf Rabus
    • 1
    Email author
  • Michael Kube
    • 2
  • Johann Heider
    • 3
  • Alfred Beck
    • 2
  • Katja Heitmann
    • 2
  • Friedrich Widdel
    • 1
  • Richard Reinhardt
    • 2
  1. 1.Max Planck Institut für Marine MikrobiologieBremenGermany
  2. 2.Max Planck Institut für Molekulare GenetikBerlinGermany
  3. 3.Institut für Biologie II, MikrobiologieUniversität FreiburgFreiburgGermany

Personalised recommendations