Archives of Microbiology

, Volume 183, Issue 1, pp 19–26 | Cite as

Phylogeny of symbiotic cyanobacteria within the genus Nostoc based on 16S rDNA sequence analyses

  • Mette M. Svenning
  • Torsten Eriksson
  • Ulla Rasmussen
Original Paper

Abstract

A phylogenetic analysis of selected symbiotic Nostoc strain sequences and available database 16S rDNA sequences of both symbiotic and free-living cyanobacteria was carried out using maximum likelihood and Bayesian inference techniques. Most of the symbiotic strains fell into well separated clades. One clade consisted of a mixture of symbiotic and free-living isolates. This clade includes Nostoc sp. strain PCC 73102, the reference strain proposed for Nostoc punctiforme. A separate symbiotic clade with isolates exclusively from Gunnera species was also obtained, suggesting that not all symbiotic Nostoc species can be assigned to N. punctiforme. Moreover, isolates from Azolla filiculoides and one from Gunnera dentata were well nested within a clade comprising most of the Anabaena sequences. This result supports the affiliation of the Azolla isolates with the genus Anabaena and shows that strains within this genus can form symbioses with additional hosts. Furthermore, these symbiotic strains produced hormogonia, thereby verifying that hormogonia formation is not absent in Anabaena and cannot be used as a criterion to distinguish it from Nostoc.

Keywords

Cyanobacteria Nostoc Anabaena Symbioses 16S rRNA gene Sequencing Phylogeny 

Notes

Acknowledgements

Coby Weber and Björn Hansen are thanked for technical assistance. This work was supported by grants from Carl Tryggers Foundation and Nordic Academy for Advanced Study to U.R.

References

  1. Baker JA, Entsch B, McKay DB (2003) The cyanobiont in an Azolla fern is neither Anabaena nor Nostoc. FEMS Microbiol Lett 229:43–47CrossRefPubMedGoogle Scholar
  2. Carpenter EJ, Foster RA (2002) Marine cyanobacterial symbiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbioses. Kluwer, Dordrecht, pp 11–19Google Scholar
  3. Costa JL, Paulsrud P, Lindblad P (1999) Cyanobiont diversity within coralloid roots of selected cycad species. FEMS Microbiol Ecol 28:85–91CrossRefGoogle Scholar
  4. Costa JL, Paulsrud P, Rikkinen J, Lindblad P (2001) Genetic diversity of Nostoc symbionts endophytically associated with two bryophyte species. Appl Environ Microbiol 67:4393–4396CrossRefPubMedGoogle Scholar
  5. Cummings MP, Handley SA, Myers DS, Reed DL, Rokas A, Winka K (2003) Comparing bootstrap and posterior probability values in the four-taxon case. Syst Biol 52:477–487PubMedGoogle Scholar
  6. Enderlin CS, Meeks JC (1983) Pure culture and reconstitution of the Anthoceros-Nostoc symbiotic association. Planta 158:157–165Google Scholar
  7. Golubic S, Seong-Joo L (1999) Early cyanobacterial fossil record: preservation, palaeoenvironments and identification. Eur J Phycol 34:339–348CrossRefGoogle Scholar
  8. Guevara R, Armesto JJ, Caru M (2002) Genetic diversity of Nostoc microsymbionts from Gunnera tinctoria revealed by PCR-STRR fingerprinting. Microb Ecol 44:127–136CrossRefPubMedGoogle Scholar
  9. Gugger M, Lyra C, Henriksen P, Coutė A, Humbert JF, Sivonen K (2002) Phylogenetic comparison of the cyanobacterial genera Anabaena and Aphanizomenon. Int J Syst Evol Microbiol 52:1867–1880CrossRefPubMedGoogle Scholar
  10. Huelsenbeck JP, Ronquist F (2001a) MRBAYES: bayesian inference of phylogenetic trees. Biometrics 17:754–755Google Scholar
  11. Huelsenbeck JP, Ronquist F (2001b) MrBayes: a program for the Bayesian inference of phylogeny, version 2.01. Computer Program distributed by the authorsGoogle Scholar
  12. Janson S (2002) Cyanobacteria in symbiosis with diatoms. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbioses. Kluwer, Dordrecht, pp 1–10Google Scholar
  13. Johansson C, Bergman B (1994) Reconstitution of the symbiosis of Gunnera manicata Linden: cyanobacterial specificity. New Phytol 126:643–652Google Scholar
  14. Kluge M, Mollenhauer D, Wolf E, Schüβler A (2002) The Nostoc-Geosiphon endocytobiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbioses. Kluwer, Dordrecht, pp 19–30Google Scholar
  15. Lachance M-A (1981) Genetic relatedness of heterocystous cyanobacteria by deoxyribonucleic acid-deoxyribonucleic acid reassociation. Int J Syst Bacteriol 31:139–147Google Scholar
  16. Lewis PO (2001) Phylogenetic systematics turns over a new leaf. Trends Ecol Evol 16:30–37CrossRefPubMedGoogle Scholar
  17. Lumpkin TA, Plucknett DL (1980) Azolla: botany, physiology, and use as a green manure. Econ Bot 34:111–153Google Scholar
  18. Lyra C, Soumalainen S, Gugger M, Vezie C, Sundman P, Paulin L, Sivonen K (2001) Molecular characterization of planctonic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. Int J Syst Evol Microbiol 51:513–526PubMedGoogle Scholar
  19. Maddison DR, Swofford DL, Maddison WP (1997) NEXUS: an extensible file format for systematic information. Syst Biol 46:590–621PubMedGoogle Scholar
  20. Mazel D, Houmard J, Castets AM, Tandeau de Marsac N (1990) Highly repetitive DNA sequences in cyanobacterial genomes. J Bacteriol 172:2755–2761PubMedGoogle Scholar
  21. Meeks JC, Elhai J, Thiel T, Potts M, Larimer F, Lamerdin J, Predki P, Atlas R (2001) An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth Res 70:85–106CrossRefGoogle Scholar
  22. Mollenhauer D, Mollenhauer R, Kluge M (1996) Studies on the initiation and development of the partner association in Geosiphon pyriforme (Kütz.) v. Wettstein, a unique endocytobiotic system of a fungus (Glomales) and the cyanobacterium Nostoc punctiforme (Kütz.). Hariot Protoplasma 193:3–9Google Scholar
  23. Moor AW (1969) Azolla: biology and agronomic significance. Bot Rev 35:17–34Google Scholar
  24. Nilsson M, Bergman B, Rasmussen U (2000) Cyanobacterial diversity in geographically related and distant host plants of the genus Gunnera. Arch Microbiol 173:97–102CrossRefPubMedGoogle Scholar
  25. Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332PubMedGoogle Scholar
  26. Nylander JAA (2001) MrModeltest, version 1.1b. Distributed by the authorGoogle Scholar
  27. Oksanen I, Lohtander K, Sivonen K, Rikkinen J (2004) Repeat-type distribution in trnL intron does not correspond with species phylogeny: comparison of the genetic markers 16S rRNA and trnL intron in heterocystous cyanobacteria. Int J Syst Evol Microbiol 54:765–772CrossRefPubMedGoogle Scholar
  28. Paulsrud P, Lindblad P (1998) Sequence variation of the tRNA Leu intron as a marker for genetic diversity and specificity of symbiotic cyanobacteria in some lichens. Appl Environ Microbiol 64:310–315PubMedGoogle Scholar
  29. Paulsrud P, Rikkinen J, Lindblad P (1998) Cyanobiont specificity in some Nostoc-containing lichens and in a Peltigera aphthosa photosymbiodeme. New Phytol 139:517–524CrossRefGoogle Scholar
  30. Plazinski J, Zheng Q, Taylor R, Croft L, Rolfe BG, Gunning BES (1990) DNA probes show genetic variation in cyanobacterial symbionts of the Azolla fern and a closer relationship to free-living Nostoc strains than to Anabaena strains. Appl Environ Microbiol 56:1263–1270Google Scholar
  31. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  32. Rai AN, Söderbäck E, Bergman B (2000) Cyanobacterium-plant symbioses. Transley review 116. New Phytol 147:449–481CrossRefGoogle Scholar
  33. Rambaut A (1996) Se-Al. Sequence Alignment Editor, version 1.0a1. Distributed by the author, Department of Zoology, University of OxfordGoogle Scholar
  34. Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311PubMedGoogle Scholar
  35. Rasmussen U, Svenning MM (1998) Fingerprinting of cyanobacteria based on PCR with primers derived from short and long tandemly repeated repetitive sequences. Appl Environ Microbiol 64:265–272Google Scholar
  36. Rasmussen U, Svenning MM (2001) Characterization by genotypic methods of symbiotic Nostoc strains isolated from five species of Gunnera. Arch Microbiol 179:204–210CrossRefGoogle Scholar
  37. Raven JA (2002) Evolution of cyanobacterial symbioses. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbioses. Kluwer, Dordrecht, pp 329–346Google Scholar
  38. Rikkinen J, Oksanen I, Lohtander K (2002) Lichen guilds share related cyanobacterial symbionts. Science 297:357CrossRefPubMedGoogle Scholar
  39. Rippka R (1988) Recognition and identification of cyanobacteria. Methods Enzymol 167:28–67Google Scholar
  40. Rippka R, Herdman M (1992) Pasteur culture collection of cyanobacterial strains in axenic culture. Catalogue and taxonomic handbook, vol I: Catalog of strains, 1992/1993. Institute Pasteur, ParisGoogle Scholar
  41. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  42. Schopf JW (2000) The fossil record: tracing the roots of the cyanobacterial linage. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Their diversity in time and space. Kluwer, Dordrecht, pp 13–35Google Scholar
  43. Staden R (1996) The Staden sequence analysis package. Mol Biotech 5:233–241PubMedGoogle Scholar
  44. Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205PubMedGoogle Scholar
  45. Swofford DL (2001) PAUP* Phylogenetic analysis using parsimony and other methods, version 4.0. SinauerGoogle Scholar
  46. Tamas I, Svircev Z, Andersson SGE (2000) Determinative value of a portion of the nifH sequence for the genera Nostoc and Anabaena (Cyanobacteria). Curr Microbiol 41:197–200PubMedGoogle Scholar
  47. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedGoogle Scholar
  48. West NJ, Adams DG (1997) Phenotypic and genotypic comparison of symbiotic and free-living cyanobacteria from a single field site. Appl Environ Microbiol 63:4479–4484Google Scholar
  49. Wilmotte A, Herdman M (2001) Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, Berlin Heidelberg New York, pp 487–514Google Scholar
  50. Wright D, Prickett T, Helm RF, Potts M (2001) Form species Nostoc commune (Cyanobacteria). Int J Syst Evol Microbiol 51:1839–1852PubMedGoogle Scholar
  51. Zheng WW, Nilsson M, Bergman B, Rasmussen U (2002) Genetic diversity and classification of cyanobacteria in different Azolla species by the use of PCR fingerprinting. Theor Appl Genet 99:1187–1193CrossRefGoogle Scholar
  52. Zimmerman WJ, Culley DE (1991) Genetic variation at the apcAB, gvpAi, and nifH loci and in the DNA methylation among N2-fixing cyanobacteria designated Nostoc punctiforme. Microb Ecol 21:199–209Google Scholar
  53. Zimmerman WJ, Rosen BH (1992) Cyanobiont diversity within and among cycads on one field site. Can J Microbiol 38:1324–1328PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Mette M. Svenning
    • 1
  • Torsten Eriksson
    • 2
  • Ulla Rasmussen
    • 3
  1. 1.Department of Biology, Faculty of ScienceUniversity of TromsöTromsöNorway
  2. 2.Bergius FoundationRoyal Swedish Academy of SciencesStockholmSweden
  3. 3.Department of BotanyStockholm UniversityStockholmSweden

Personalised recommendations