Advertisement

Archives of Microbiology

, Volume 182, Issue 5, pp 404–413 | Cite as

Composition of the lipids of Nanoarchaeum equitans and their origin from its host Ignicoccus sp. strain KIN4/I

  • Ulrike Jahn
  • Roger Summons
  • Helen Sturt
  • Emmanuelle Grosjean
  • Harald Huber
Original Paper

Abstract

The contents and nature of the membrane lipids of Nanoarchaeum equitans and Ignicoccus sp. strain KIN4/I, grown at 90°C, and Ignicoccus sp. strain KIN4/I, cultivated at its lowest and highest growth temperatures (75°C and 95°C) were analyzed. Both organisms contained very simple and qualitatively identical assemblages of glycerol ether lipids, showing only differences in the amounts of certain components. LC–MS analyses of the total lipid extracts revealed that archaeol and caldarchaeol were the main core lipids. The predominant polar headgroups consisted of one or more sugar residues attached either directly to the core lipid or via a phosphate group. GC–MS analyses of hydrolyzed total lipid extracts revealed that the co-culture of N. equitans and Ignicoccus sp. strain KIN4/I, as well as Ignicoccus sp. strain KIN4/I grown at 90°C, contained phytane and biphytane in a ratio of approximately 4:1. Purified N. equitans cells and Ignicoccus sp. strain KIN4/I cultivated at 75°C and 95°C had a phytane to biphytane ratio of 10:1. Sugar residues were mainly mannose and small amounts of glucose. Consistent 13C fractionation patterns of isoprenoid chains of N. equitans and its host indicated that the N. equitans lipids were synthesized in the host cells.

Keywords

Nanoarchaeum equitans Ignicoccus Lipid analysis Intact polar lipids Archaeol Caldarchaeol Glycerol dibiphytanyl glycerol tetraether 

Notes

Acknowledgments

The authors are grateful to Aurana Lewis for assistance with lipid isolation and analysis, Carolyn Colonero for assistance with isotopic analysis, and to Daniela Näther for preparation of the outer membrane of Ignicoccus sp. strain KIN4/I. Manuela Baumgartner kindly provided biomass from M. jannaschii, M. kandleri and M. fervidus. Dan Repeta (Woods Hole Oceanographic Institution) kindly provided carbohydrate standards. We thank Yanenk Hebting and Karl O. Stetter for fruitful discussions on the chemistry and microbiology issues encountered in this research. This work was supported by awards from the NASA Exobiology Program (RES) and the NASA Astrobiology Institute RES and by a grant of the Deutsche Forschungsgemeinschaft to HH (Förderkennzeichen HU 703/1-1). Helen Sturt is supported by the NASA Astrobiology Institute (Subsurface Biospheres Team at the University of Rhode Island), and we are especially grateful to Kai-Uwe Hinrichs and Waters Corporation for access to LC–MS equipment. We thank John Gibson and an anonymous reviewer who made numerous constructive suggestions that improved this manuscript.

References

  1. Barns SM, Delwiche CF, Palmers JD, Pace NR (1996) Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci USA 93:9188–9193CrossRefPubMedGoogle Scholar
  2. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917Google Scholar
  3. De Rosa M, Gambacorta A (1986) Lipid biogenesis in archaebacteria. In: Kandler O, Zillig W (eds) Archaebacteria’85. Fischer, Stuttgart, pp 278–285Google Scholar
  4. De Rosa M, Basso A, Gambacorta A, Holz I, Trincone A, Zillig W (1987) Lipid of Thermococcus celer, a sulfur-reducing Archaebacterium—structure and biosynthesis. Syst Appl Microbiol 9(1–2):1–5Google Scholar
  5. De Rosa M, Gambacorta A, Huber R, Lanzotti V, Nicolaus B, Stetter KO, Trincone A (1988) A new 15,16-dimethyl-30-glyceroloxytriacontanoic acid from lipids of Thermotoga maritima. J Chem Soc Chem Commun 19:1300–1301CrossRefGoogle Scholar
  6. De Rosa M, Trincone A, Nicolaus B, Gambacorta A (1991) Archaebacteria: lipids, membrane structures, and adaptation to environmental stresses. In: DiPrisco G (ed) Life under extreme conditions. Springer, Berlin Heidelberg New York, pp 61–86Google Scholar
  7. Ferrante G, Richards JC, Sprott GD (1990) Structures of polar lipids from the thermophilic, deep-sea archaeobacterium Methanococcus jannaschii. Biochem Cell Biol 68(1):174–283Google Scholar
  8. Hafenbradl D, Keller M, Stetter KO (1996) Lipid analysis of Methanopyrus kandleri. FEMS Microbiol Lett 136(2):199–202CrossRefGoogle Scholar
  9. Hohn MJ, Hedlund BP, Huber H (2002) Detection of 16S-rDNA sequences representing the novel phylum “Nanoarchaeota”: indication for a wide distribution in high temperature biotopes. Syst Appl Microbiol 25:551–554CrossRefPubMedGoogle Scholar
  10. Huber R, Wilharm T, Huber D, Trincone A, Burggraf S, König H, Rachel R, Rockinger I, Fricke H, Stetter KO (1992) Aquifex pyrophilus gen. nov., sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15:340–351Google Scholar
  11. Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67CrossRefPubMedGoogle Scholar
  12. Huber H, Hohn MJ, Stetter KO, Rachel R (2003a) The phylum Nanoarchaeota: present knowledge and future perspectives of a unique form of life. Res Microbiol 154:165–171CrossRefPubMedGoogle Scholar
  13. Huber H, Hohn MJ, Rachel R, Stetter KO (2003b) “Nanoarchaeota”. In: Dworkin M, Schleifer KH, Stackebrandt E (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Springer, Berlin Heidelberg New York www.prokaryotes.com(release 3.13, 12th May 2003)CrossRefPubMedGoogle Scholar
  14. Jahn U (2003) Physiologische, molekularbiologische und biochemische Untersuchungen am Organismensystem Nanoarchaeum equitans und Ignicoccus sp. KIN4/I. Diplomarbeit, Universität RegensburgGoogle Scholar
  15. Jahnke LL, Eder W, Huber R, Hope JM, Hinrichs K, Hayes JM, Des Marais DJ, Cady S, Summons R (2001) Signature lipids and stable carbon isotope analysis of octopus spring hyperthermophilic communities compared with those of Aquificales representatives. Appl Environ Microbiol 67:5179–5189CrossRefPubMedGoogle Scholar
  16. Kates M (1978) The phytanyl ether-linked polar lipids and isoprenoid neutral lipids of extremely halophilic bacteria. Prog Chem Fats Other Lipids 15:301–342CrossRefPubMedGoogle Scholar
  17. Kates M (1986) Techniques of lipidology: isolation, analysis and identification of lipids. In: Bubon RH, van Knippenberg PH (eds) Laboratory techniques in biochemistry and molecular biology. Elsevier, AmsterdamGoogle Scholar
  18. Kates M (1993) Membrane lipids of archaea. In: Kates M, Kushner DJ, Matheson AT (eds) The biochemistry of archaea (Archaebacteria). Elsevier, Amsterdam, pp 261–295Google Scholar
  19. Koga Y, Nishihara M, Morii H, Akagawa-Matsushita M (1993) Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosynthesis. Microbiol Rev 57:164–182PubMedGoogle Scholar
  20. Koga Y, Kyuragi T, Nishihara M, Sone N (1998) Did archaeal and bacterial cells arise independently from non-cellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent. J Mol Evol 46(1):54–63PubMedGoogle Scholar
  21. Kurr M, Huber R, König H, Jannasch HW, Fricke H, Trincone A, Kristjansson JK Stetter KO (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch Microbiol 156:239–247Google Scholar
  22. Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci USA 97:13172–13177CrossRefPubMedGoogle Scholar
  23. Langworthy TA (1985) Archaebacteria. In: Woese CR, Wolfe RS (eds) The bacteria, vol 8. Academic, New York, pp 459–497Google Scholar
  24. Nishihara M, Koga Y (1987) Extraction and composition of polar lipids from the archaebacterium, Methanobacterium thermoautotrophicum: effective extraction of tetraether lipids by an acidified solvent. J Biochem 101:997–1005PubMedGoogle Scholar
  25. Rachel R, Wyschkony I, Riehl S, Huber H (2002) The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. Archaea 1:9–18Google Scholar
  26. Rütters H, Sass H, Cypionka H, Rullkötter J (2001) Monoalkylether phospholipid in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus. Arch Microbiol 176:435–442CrossRefPubMedGoogle Scholar
  27. Sprott GD, Meloche M, Richards JC (1991) Proportions of diether, macrocyclic diether, and tetraether lipids in Methanococcus jannaschii grown at different temperatures. J Bacteriol 173:3907–3910PubMedGoogle Scholar
  28. Sprott GD, Agnew BJ, Girshchandra BP (1997) Structural features of ether lipids in the archaeobacterial thermophiles Pyrococcus furiosus, Methanopyrus kandleri, Methanothermus fervidus, and Sulfolobus acidocaldarius. Can J Microbiol 43:467–476Google Scholar
  29. Stetter KO (1989) Extremely thermophilic chemolithoautotrophic archaebacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech/Springer, Madison/Berlin Heidelberg New York London Paris Tokyo, pp 167–175Google Scholar
  30. Stetter KO (1995) Microbial life in hyperthermal environments. Am Soc Microbiol News 61:285–290Google Scholar
  31. Sturt HF, Summons RE, Smith K, Elvert M, Hinrichs K-U (2004) Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry—new biomarkers for biogeochemistry and microbial ecology. Rapid Commun Mass Spectrom 18(6):617–628CrossRefPubMedGoogle Scholar
  32. Sugai A, Sakuma R, Fukuda I, Itoh YH, Kon K, Ando S, Itoh (1995) The structure of the core polyol of the ether lipids from Sulfolobus acidocaldarius. Lipids 30:339–344PubMedGoogle Scholar
  33. Summons RE, Franzman PD, Nichols PD (1998) Carbon isotopic fractionation associated with methylotrophic methanogenesis. Org Geochem 28:465–475CrossRefGoogle Scholar
  34. Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton GG, Simon M, Söll D, Stetter KO, Short JM, Noordewier M (2003) The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci USA 100:12984–12988CrossRefPubMedGoogle Scholar
  35. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Ulrike Jahn
    • 1
  • Roger Summons
    • 2
  • Helen Sturt
    • 3
  • Emmanuelle Grosjean
    • 2
  • Harald Huber
    • 1
  1. 1.Lehrstuhl für MikrobiologieUniversität RegensburgRegensburgGermany
  2. 2.MIT EAPSCambridgeUSA
  3. 3.Department of Geology and GeophysicsWoods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations