Advertisement

Archives of Microbiology

, Volume 182, Issue 2–3, pp 244–253 | Cite as

Alkaliflexus imshenetskii gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake

  • Tatyana N. Zhilina
  • Ramona Appel
  • Christina Probian
  • Enrique Llobet Brossa
  • Jens Harder
  • Friedrich WiddelEmail author
  • Georgii A. Zavarzin
Original Paper

Abstract

Anaerobic saccharolytic bacteria thriving at high pH values were studied in a cellulose-degrading enrichment culture originating from the alkaline lake, Verkhneye Beloye (Central Asia). In situ hybridization of the enrichment culture with 16S rRNA-targeted probes revealed that abundant, long, thin, rod-shaped cells were related to Cytophaga. Bacteria of this type were isolated with cellobiose and five isolates were characterized. Isolates were thin, flexible, gliding rods. They formed a spherical cyst-like structure at one cell end during the late growth phase. The pH range for growth was 7.5–10.2, with an optimum around pH 8.5. Cultures produced a pinkish pigment tentatively identified as a carotenoid. Isolates did not degrade cellulose, indicating that they utilized soluble products formed by so far uncultured hydrolytic cellulose degraders. Besides cellobiose, the isolates utilized other carbohydrates, including xylose, maltose, xylan, starch, and pectin. The main organic fermentation products were propionate, acetate, and succinate. Oxygen, which was not used as electron acceptor, impaired growth. A representative isolate, strain Z-7010, with Marinilabilia salmonicolor as the closest relative, is described as a new genus and species, Alkaliflexus imshenetskii. This is the first cultivated alkaliphilic anaerobic member of the Cytophaga/Flavobacterium/Bacteroides phylum.

Keywords

Soda lakes Alkaliphiles Anaerobes Polysaccharide degradation Gliding bacteria Cytophaga/Flavobacterium/Bacteroides phylum CFB bacteria Propionate fermentation Alkaliflexus imshenetskii 

Notes

Acknowledgements

We thank Nadezhda A. Kostrikina for electron microscopy, Georgii A. Osipov for fatty acid analyses, Anatoly M. Lysenko for DNA/DNA hybridization, Rudolf Amann for support of whole-cell hybridization, and Bernhard Schink for valuable information. This work was supported by grant 02-04-48286 of the Russian Foundation for Basic Research, the MCB RAS Program, the Hanse-Wissenschaftskolleg (Delmenhorst, Germany), and the Max-Planck-Gesellschaft.

References

  1. Bachmann BJ (1955) Studies on Cytophaga fermentans, nov. sp., a facultatively anaerobic lower Myxobacterium. J Gen Microbiol 13:541–551PubMedGoogle Scholar
  2. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein–dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  3. Coughlan MP, Mayer F (1992) The cellulose-decomposing bacteria and their enzyme systems. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The Prokaryotes, 2nd edn. Springer, Berlin Heidelberg New York, pp 459–516Google Scholar
  4. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142PubMedGoogle Scholar
  5. Denger K, Schink B (1995) New halo- and thermotolerant fermenting bacteria producing surface-active compounds. Appl Microbiol Biotechnol 44:161–166CrossRefGoogle Scholar
  6. Denger K, Warthmann R, Ludwig W, Schink B (2003) Anaerophaga thermohalophila gen.nov., sp. nov. a moderately thermohalophilic, strictly anaerobic fermentative bacterium. Int J Syst Evol Microbiol 52:173–178Google Scholar
  7. Garnova ES, Zhilina TN, Tourova TP, Lysenko AM (2003) Anoxynatronum sibiricum gen. nov., sp. nov. alkaliphilic saccharolytic anaerobe from cellulosolytic community of Nizhnee Beloe (Transbaikal region). Extremophiles 7:213–220PubMedGoogle Scholar
  8. Garnova ES, Zhilina TN, Tourova TP, Kostrikina NA, Zavarzin GA (2004) Anaerobic alkaliphilic saccharolytic bacterium Alkalibacter saccharofermentans gen. nov., sp. nov. from soda lake in Transbaikal region (Russia). Extremophiles (in press)Google Scholar
  9. Garrett DE (1992) Natural soda ash. Occurrences, processing, and use. Van Nostrand Reinhold, New YorkGoogle Scholar
  10. Glöckner FO, Amann R, Alfreider A, Pernthaler J, Psenner R, Trebesius K, Schleifer K-H (1996) An in situ hybridization protocol for detection and identification of planctonic bacteria. Syst Appl Microbiol 19:403–406CrossRefPubMedGoogle Scholar
  11. Gorlenko VM, Namsaraev BB, Kulyrova AV, Zavarzina DG, Zhilina TN (1999) The activity of sulfate-reducing bacteria in bottom sediments of soda lakes of the Southeastern Transbaikal region. Microbiology (Moscow) 68:580–585Google Scholar
  12. Grant WD, Tindall BJ (1986) The alkaline saline environment. In: Herbert RA, Codd GA (eds) Microbes in extreme environments. Academic, London, pp 25–54Google Scholar
  13. Haack SK, Breznak J (1993) Cytophaga xylanolytica sp.nov., a xylan-degrading, anaerobic gliding bacterium. Arch Microbiol 159:6–15Google Scholar
  14. Hammer UT (1986) Saline lake ecosystem of the world. Junk, DordrechtGoogle Scholar
  15. Hobson PN (1988) The rumen microbial ecosystem. Elsevier, AmsterdamGoogle Scholar
  16. Hoover RB, Pikuta E, Bey AK, Marsic D, Whitman WB, Tang J, Krader P (2003) Spirochaeta americana sp.nov., a new haloalkaliphilic, obligately anaerobic spirochete isolated from soda Mono Lake in California. Int J Syst Evol Microbiol 53:815–821CrossRefPubMedGoogle Scholar
  17. Imshenetskii AA (1953) Microbiology of cellulose (in Russian). Academii Nauk SSSR, MoscowGoogle Scholar
  18. Issatchenko BL (1951) Chloride, sulfate and soda lakes of the Kulundinskayaa steppe and biogenic processes therein. In: Issatchenko BL (ed) Selected works, vol 2. USSR Academy of Sciences, Moscow, pp 143–162Google Scholar
  19. Janzen E, Bryn K (1985) Whole cell and lipopolysaccharides, fatty acids, and sugars of gram-negative bacteria. In: Goodfelow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic, New York, pp 145–172Google Scholar
  20. Jones BE, Grant WD, Collins NC, Mwatha WE (1994) Alkaliphiles: diversity and identification. In: Priest FG (ed) Bacterial diversity and systematics. Plenum, New York, pp 195–230Google Scholar
  21. Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200CrossRefPubMedGoogle Scholar
  22. Kevbrin VV, Zhilina TN, Rainey FA, Zavarzin GA (1998) Tindallia magadii gen. nov., sp. nov.: an alkaliphilic anaerobic ammonifier from soda lake deposits. Curr Microbiol 37:94–100CrossRefGoogle Scholar
  23. Kevbrin VV, Zhilina TN, Zavarzin GA (1999) Decomposition of cellulose by the anaerobic alkaliphilic microbial community. Microbiology (Moscow) 68:601–609Google Scholar
  24. Ljungdahl LG, Eriksson KE (1985) Ecology of microbial cellulose degradation. Adv Microb Ecol 8:237–299Google Scholar
  25. Ludwig W, Kumar Y, Westram R, Glöckner FO, Ludwig T, Meier H, Richter L (2002) ARB: a software environment for sequence data. Technical University Munich, Munich. http://www.arb-home.de/Google Scholar
  26. Lynd LR, Weimer PJ, Zyl WH van, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577CrossRefPubMedGoogle Scholar
  27. Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from microorganisms. J Mol Biol 5:109–118PubMedGoogle Scholar
  28. Microbial Identification System (1992) Operational manual of the microbial identification system, ver 4. Microbial ID, NewarkGoogle Scholar
  29. Nakagawa Y, Yamasato K (1996) Emendation of the genus Cytophaga and transfer of Cytophaga agarovorans and Cytophaga salmonicolor to Marinilabilia gen. nov.: phylogenetic analysis of the Flavobacterium-Cytophaga complex. Int J Syst Bacteriol 46:599–603Google Scholar
  30. Parsons TR, Maita Y, Lalli CM (1989) A manual of chemical and biological methods for seawater analysis. Pergamon, OxfordGoogle Scholar
  31. Pfennig N, Wagener S (1986) An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Methods 4:303–306CrossRefGoogle Scholar
  32. Pikuta EV, Hoover RB, Bey AK, Marsic D, Detkova EN, Whitman WB, Krader P, Cleland D (2003a) Tindallia californiensis sp. nov., a new haloalkaliphilic spore forming acetogen, isolated from Mono Lake in California. Extremophiles 7:327–334CrossRefPubMedGoogle Scholar
  33. Pikuta EV, Hoover RB, Bey AK, Marsic D, Whitman WB, Cleland D, Krader P (2003b) Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth. Int J Syst Evol Microbiol 53:1327–1332CrossRefPubMedGoogle Scholar
  34. Ravenschlag K, Sahm K, Amann R (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65:3982–3989PubMedGoogle Scholar
  35. Rees HC, Grant WD, Jones BE, Heaphy S (2004) Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods. Extremophiles 8:63–71CrossRefPubMedGoogle Scholar
  36. Reichenbach H (1992) The Order Cytophagales. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, vol 4, 2nd edn. Springer, Berlin Heidelberg New York, pp 3631–3675Google Scholar
  37. Reichenbach H, Dworkin M (1981) The Order Cytophagales (with addenda on the genera HerpetosiphonSaprospira, and Flexithrix). In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, vol 1, 1st edn. Springer, Berlin Heidelberg New York, pp 356–379Google Scholar
  38. Reichenbach H, Kleinig H, Achenbach H (1974) The pigments of Flexibacter elegans. Novel and chemosystematically useful compounds. Arch Microbiol 101:131–134PubMedGoogle Scholar
  39. Sahm K, Berninger U-G (1998) Abundance, vertical distibution, and community structure of benthic prokaryotes from permanently cold marine sediments (Svalbard, Arctic Ocean). Mar Ecol Prog Ser 165:71–80Google Scholar
  40. Sasser M (1997) Identification of bacteria by gas chromatography of cellular fatty acids. (Technical note 101) MIDI Sherlock Microbial Identification System, NewarkGoogle Scholar
  41. Suzuki M, Nakagawa Y, Harayama S, Yamamoto S (1999) Phylogenetic analysis of genus Marinilabilia and related bacteria based on the amino acid sequences of GyrB and emended description of Marinilabilia salmonicolor with Marinilabilia agarovorans as its subjective synonym. Int J Syst Bacteriol 49:1551–1557PubMedGoogle Scholar
  42. Tindall BJ (1986) Prokaryotic life in the alkaline, saline, athalassic environment. In: Rodriguez-Valera F (ed) Halophilic bacteria. CRC, Boca Raton, pp 31–67Google Scholar
  43. Trüper HG, Schlegel HG (1964) Sulfur metabolism in Thiorhodaceae. 1. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek 30:225–238PubMedGoogle Scholar
  44. Veldkamp HA (1961) study of two marine agar-decomposing facultatively anaerobic myxobacteria. J Gen Microbiol 261:331–342Google Scholar
  45. Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, vol 4, 2nd edn. Berlin Heidelberg New York, pp 3352–3378Google Scholar
  46. Zavarzin GA (1993) Epicontinental soda lakes as probable relict biotopes of terrestrial biota formation. Microbiology (Moscow) 68:503–521Google Scholar
  47. Zavarzin GA, Zhilina TN, Kevbrin VV (1999) The alkaliphilic microbial community and its functional diversity. Microbiology (Moscow) 68:503–521Google Scholar
  48. Zhilina TN, Zavarzin GA (1994) Alkaliphilic anaerobic community at pH 10. Curr Microbiol 29:109–112Google Scholar
  49. Zhilina TN, Zavarzin GA (2000) Anaerobic chemotrophic alkaliphiles. In: Seckbach J (ed) Journey to diverse microbial worlds. Kluwer, Dordrecht, pp 191–208Google Scholar
  50. Zhilina TN, Zavarzin GA, Rainey FA, Kevbrin VV, Kostrikina NA, Lysenko AM (1996) Spirochaeta alkalica sp. nov., Spirochaeta africana sp. nov., and Spirochaeta asiatica sp. nov., alkaliphilic anaerobes from the continental soda lakes in Central Asia and East African Rift. Int J Syst Bacteriol 46:305–312PubMedGoogle Scholar
  51. Zhilina TN, Garnova ES, Tourova TP, Kostrikina NA, Zavarzin GA (2001a) Halonatronum saccharophilum gen. nov., sp. nov.: a new haloalkaliphilic bacterium of the order Haloanaerobiales from lake Magadi. Microbiology (Moscow) 70:64–72CrossRefGoogle Scholar
  52. Zhilina TN, Garnova ES, Tourova TP, Kostrikina NA, Zavarzin GA (2001b) Amphibacillus fermentum sp. nov. and Amphibacillus tropicus sp. nov., new alkaliphilic, facultatively anaerobic saccharolytic bacilli from Lake Magadi. Microbiology (Moscow) 70:711–722CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Tatyana N. Zhilina
    • 1
  • Ramona Appel
    • 2
  • Christina Probian
    • 2
  • Enrique Llobet Brossa
    • 2
  • Jens Harder
    • 2
  • Friedrich Widdel
    • 2
    Email author
  • Georgii A. Zavarzin
    • 1
  1. 1.Institute of Microbiology of the Russian Academy of SciencesMoscowRussia
  2. 2.Max-Planck-Institut für Marine MikrobiologieBremenGermany

Personalised recommendations