Archives of Microbiology

, Volume 182, Issue 2–3, pp 259–263 | Cite as

Characterization of a heme oxygenase of Clostridium tetani and its possible role in oxygen tolerance

  • Holger Brüggemann
  • Rosalie Bauer
  • Stéphanie Raffestin
  • Gerhard GottschalkEmail author
Short Communication


In order to colonize mammalian wounds, the anaerobic bacterium Clostridium tetani must presumably cope with temporary oxic conditions. Therefore, the recently decoded genome sequence was searched for genes which could confer oxygen tolerance. A few identified systems such as superoxide dismutases and peroxidases are probably responsible for this protection against toxic oxygen species. Another system was detected, a heme oxygenase which could have a role in establishing or maintaining an anoxic microenvironment in the process of wound colonization. The hemT gene encoding the heme oxygenase is expressed in C. tetani, as shown by reverse transcription–PCR. When overexpressed in Escherichia coli, the enzyme converts heme to biliverdin under strict oxic conditions.


Clostridium tetani Tetanus Heme oxygenase Oxidative stress Aerotolerance Iron acquisition 



We thank M. Popoff (Institut Pasteur, Paris) for helpful discussions and the provision of C. tetani strain CN655 and thank O. Valerius (Departments of Molecular Microbiology and Genetics, University of Göttingen) for mass spectrometric analyses. The work was supported by a grant from the Niedersächsisches Ministerium für Wissenschaft und Kultur to the Göttingen Genomics Laboratory and by funds from the Competence Network Göttingen “Genome Research of Bacteria”, financed by the German Federal Ministry of Education and Research (BMBF).


  1. Arnon SS (1997) Human tetanus and human botulism. In: Rood JI, McClane BA, Songer JG, Titball RW (eds) The clostridia: molecular biology and pathogenesis. Academic, San Diego, pp 95–115Google Scholar
  2. Bowler PG (2002) Wound pathophysiology, infection and therapeutic options. Ann Med 34:419–427CrossRefPubMedGoogle Scholar
  3. Briolat V, Reysset G (2002) Identification of the Clostridium perfringens genes involved in the adaptive response to oxidative stress. J Bacteriol 184:2333–2343CrossRefPubMedGoogle Scholar
  4. Brüggemann H, Gottschalk G (2004) Insights in metabolism and toxin production from the complete genome sequence of Clostridium tetani. Anaerobe 10:53–68CrossRefGoogle Scholar
  5. Brüggemann H, Bäumer S, Fricke WF, Wiezer A, Liesegang H, Decker I, Herzberg C, Martinez-Arias R, Merkl R, Henne A, Gottschalk G (2003) The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc Natl Acad Sci USA 100:1316–1321CrossRefPubMedGoogle Scholar
  6. Gottschalk G, Andreesen JR, Hippe H (1981) The genus Clostridium. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 1767–1803Google Scholar
  7. Jean D, Briolat V, Reysset G (2004) Oxidative stress response in Clostridium perfringens. Microbiology 150:1649–1659CrossRefPubMedGoogle Scholar
  8. Lad L, Friedman J, Li H, Bhaskar B, De Montellano PRO, Poulos TL (2004) Crystal structure of human heme oxygenase-1 in a complex with biliverdin. Biochemistry 43:3793–3801Google Scholar
  9. Lumppio HL, Shenvi NV, Summers AO, Voordouw G, Kurtz DM (2001) Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system. J Bacteriol 183:101–108CrossRefPubMedGoogle Scholar
  10. Migita CT, Zhang X, Yoshida T (2003) Expression and characterization of cyanobacterium heme oxygenase, a key enzyme in the phycobilin synthesis. Properties of the heme complex of recombinant active enzyme. Eur J Biochem 270:687–698Google Scholar
  11. Nölling J, Breton G, Omelchenko MV, Makarova KS, Zeng Q, Gibson R, Lee HM, Dubois JA, Qiu D, Hitti J, GTC Sequencing Center Production, Finishing, and Bioinformatics Teams, Wolf YI, Tatusov RL, Sabathe F, Doucette-Stamm L, Soucaille P, Daly MJ, Bennett GN, Koonin EV, Smith DR (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838CrossRefPubMedGoogle Scholar
  12. O’Brien DK, Melville SB (2000) The anaerobic pathogen Clostridium perfringens can escape the phagosome of macrophages under aerobic conditions. Cell Microbiol 2:505–519CrossRefPubMedGoogle Scholar
  13. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  14. Schiavo G, Benfenati F, Poulain B, Rossetto O, Laureto PP de, DasGupta BR, Montecucco C (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835CrossRefPubMedGoogle Scholar
  15. Shimizu T, Ohtani K, Hirakawa H, Ohshima K, Yamashita A, Shiba T, Ogasawara N, Hattori M, Kuhara S, Hayashi H (2002) Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci USA 99:996–1001CrossRefPubMedGoogle Scholar
  16. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235:1043–1046PubMedGoogle Scholar
  17. Wilks A (2002) Heme oxygenase: evolution, structure, and mechanism. Antioxid Redox Signal 4:603–6144CrossRefPubMedGoogle Scholar
  18. Wilks A, Schmitt MP (1998) Expression and characterization of a heme oxygenase (Hmu O) from Corynebacterium diphtheriae. Iron acquisition requires oxidative cleavage of the heme macrocycle. J Biol Chem 273:837–841CrossRefPubMedGoogle Scholar
  19. Yamashita K, McDaid J, Ollinger R, Tsui TY, Berberat PO, Usheva A, Csizmadia E, Smith RN, Soares MP, Bach FH (2004) Biliverdin, a natural product of heme catabolism, induces tolerance to cardiac allografts. FASEB J 18:765–767PubMedGoogle Scholar
  20. Zhu W, Wilks A, Stojiljkovic I (2000) Degradation of heme in gram-negative bacteria: the product of the hemO gene of Neisseriae is a heme oxygenase. J Bacteriol 182:6783–6790CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Holger Brüggemann
    • 1
    • 2
  • Rosalie Bauer
    • 1
    • 3
  • Stéphanie Raffestin
    • 4
  • Gerhard Gottschalk
    • 1
    Email author
  1. 1.Göttingen Genomics Laboratory, Institute of Microbiology and GeneticsGeorg-August-University GöttingenGöttingenGermany
  2. 2.Laboratoire de Génomique des Microorganismes PathogènesInstitut PasteurParisFrance
  3. 3.Departments of Microbiology and ParasitologyUmweltbundesamtBerlinGermany
  4. 4.Unité des Bactéries Anaérobies et ToxinesInstitut PasteurParisFrance

Personalised recommendations