Archives of Microbiology

, Volume 182, Issue 4, pp 265–276 | Cite as

Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria

  • Niels-Ulrik FrigaardEmail author
  • Donald A. Bryant


Based upon their photosynthetic nature and the presence of a unique light-harvesting antenna structure, the chlorosome, the photosynthetic green bacteria are defined as a distinctive group in the Bacteria. However, members of the two taxa that comprise this group, the green sulfur bacteria (Chlorobi) and the filamentous anoxygenic phototrophic bacteria (“Chloroflexales”), are otherwise quite different, both physiologically and phylogenetically. This review summarizes how genome sequence information facilitated studies of the biosynthesis and function of the photosynthetic apparatus and the oxidation of inorganic sulfur compounds in two model organisms that represent these taxa, Chlorobium tepidum and Chloroflexus aurantiacus. The genes involved in bacteriochlorophyll (BChl) c and carotenoid biosynthesis in these two organisms were identified by sequence homology with known BChl a and carotenoid biosynthesis enzymes, gene cluster analysis in Cfx. aurantiacus, and gene inactivation studies in Chl. tepidum. Based on these results, BChl a and BChl c biosynthesis is similar in the two organisms, whereas carotenoid biosynthesis differs significantly. In agreement with its facultative anaerobic nature, Cfx. aurantiacus in some cases apparently produces structurally different enzymes for heme and BChl biosynthesis, in which one enzyme functions under anoxic conditions and the other performs the same reaction under oxic conditions. The Chl. tepidum mutants produced with modified BChl c and carotenoid species also allow the functions of these pigments to be studied in vivo.


Bacteriochlorophyll a Bacteriochlorophyll biosynthesis Bacteriochlorophyll c Carotenoid biosynthesis Chlorobium Chloroflexus Chlorosome Functional genomics Inorganic sulfur metabolism 



Research from our laboratory was supported by grant DE-FG02-94ER20137 from the United States Department of Energy to D.A.B.


  1. Bamford VA, Bruno S, Rasmussen T, Appia-Ayme C, Cheesman MR, Berks BC, Hemmings AM (2002) Structural basis for the oxidation of thiosulfate by a sulfur cycle enzyme. EMBO J 21:5599–5610CrossRefPubMedGoogle Scholar
  2. Blankenship RE, Matsuura K (2003) Antenna complexes from green photosynthetic bacteria. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer, Dordrecht, pp 195–217Google Scholar
  3. Blankenship RE, Olson JM, Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 399–435Google Scholar
  4. Bryant DA, Vassilieva EV, Frigaard N-U, Li H (2002) Selective protein extraction from Chlorobium tepidum chlorosomes using detergents. Evidence that CsmA forms multimers and binds bacteriochlorophyll a. Biochemistry 41:14403–14411CrossRefPubMedGoogle Scholar
  5. Carbonera D, Bordignon E, Giacometti G, Agostini G, Vianelli A, Vannini C (2001) Fluorescence and absorption detected magnetic resonance of chlorosomes from green bacteria Chlorobium tepidum and Chloroflexus aurantiacus—a comparative study. J Phys Chem B 105:246–255CrossRefGoogle Scholar
  6. Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, Dodson RJ, Deboy R, Gwinn ML, Nelson WC, Haft DH, Hickey EK, Peterson JD, Durkin AS, Kolonay JL, Yang F, Holt I, Umayam LA, Mason T, Brenner M, Shea TP, Parksey D, Nierman WC, Feldblyum TV, Hansen CL, Craven MB, Radune D, Vamathevan J, Khouri H, White O, Gruber TM, Ketchum KA, Venter JC, Tettelin H, Bryant DA, Fraser CM (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci USA 99:9509–9514CrossRefPubMedGoogle Scholar
  7. Frigaard N-U, Bryant DA (2001) Chromosomal gene inactivation in the green sulfur bacterium Chlorobium tepidum by natural transformation. Appl Environ Microbiol 67:2538–2544CrossRefPubMedGoogle Scholar
  8. Frigaard N-U, Takaichi S, Hirota M, Shimada K, Matsuura K (1997) Quinones in chlorosomes of green sulfur bacteria and their role in the redox-dependent fluorescence studied in chlorosome-like bacteriochlorophyll c aggregates. Arch Microbiol 167:343–349CrossRefGoogle Scholar
  9. Frigaard N-U, Vassilieva EV, Li H, Milks KJ, Zhao J, Bryant DA (2001) The remarkable chlorosome. Proc Int Congr Photosynth 12:S1-003Google Scholar
  10. Frigaard N-U, Voigt GD, Bryant DA (2002) Chlorobium tepidum mutant lacking bacteriochlorophyll c made by inactivation of the bchK gene, encoding bacteriochlorophyll c synthase. J Bacteriol 184:3368–3376CrossRefPubMedGoogle Scholar
  11. Frigaard N-U, Gomez Maqueo Chew A, Li H, Maresca JA, Bryant DA (2003) Chlorobium tepidum: insights into the structure, physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence. Photosynth Res 78:93–117CrossRefGoogle Scholar
  12. Frigaard N-U, Gomez Maqueo Chew A, Maresca JA, Bryant DA (2004a) Bacteriochlorophyll biosynthesis in green bacteria. In: Grimm B, Porra R, Rüdiger W, Scheer H (eds) Biochemistry and biophysics of chlorophyll. Kluwer, Dordrecht (in press)CrossRefPubMedGoogle Scholar
  13. Frigaard N-U, Li H, Milks KJ, Bryant DA (2004b) Nine mutants of Chlorobium tepidum each unable to synthesize a different chlorosome protein still assemble functional chlorosomes. J Bacteriol 186:646–653CrossRefPubMedGoogle Scholar
  14. Frigaard N-U, Maresca JA, Yunker CE, Jones AD, Bryant DA (2004c) Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 186:5210–5220CrossRefPubMedGoogle Scholar
  15. Frigaard N-U, Sakuragi Y, Bryant DA (2004d) Gene inactivation in the cyanobacterium Synechococcus sp. PCC 7002 and the green sulfur bacterium Chlorobium tepidum using in vitro-made DNA constructs and natural transformation. In: Carpentier R (ed) Photosynthesis research protocols. (Methods in molecular biology series) Humana, Totowa (in press)CrossRefPubMedGoogle Scholar
  16. Garrity GM, Holt JG (2001a) Phylum BXI. Chlorobi phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York Berlin Heidelberg, pp 601–623Google Scholar
  17. Garrity GM, Holt JG (2001b) Phylum BVI. Chloroflexi phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York Berlin Heidelberg, pp 427–446Google Scholar
  18. Gich F, Airs RL, Danielsen M, Keely BJ, Abella CA, Garcia-Gil J, Miller M, Borrego CM (2003) Characterization of the chlorosome antenna of the filamentous anoxygenic phototrophic bacterium Chloronema sp strain UdG9001. Arch Microbiol 180:417–426CrossRefPubMedGoogle Scholar
  19. Green BR, Gantt E (2000) Is photosynthesis really derived from purple bacteria? J Phycol 36:983–985CrossRefGoogle Scholar
  20. Griesbeck C, Schütz M, Schödl T, Bathe S, Nausch L, Mederer N, Vielreicher M, Hauska G (2002) Mechanism of sulfide–quinone reductase investigated using site-directed mutagenesis and sulfur analysis. Biochemistry 41:11552–11565CrossRefPubMedGoogle Scholar
  21. Gruber TM, Bryant DA (1998) Characterization of the group 1 and group 2 sigma factors of the green sulfur bacterium Chlorobium tepidum and the green non-sulfur bacterium Chloroflexus aurantiacus. Arch Microbiol 170:285–296CrossRefPubMedGoogle Scholar
  22. Halfen LN, Pierson BK, Francis GW (1972) Carotenoids of a gliding organism containing bacteriochlorophylls. Arch Mikrobiol 82:240–246Google Scholar
  23. Hanson TE, Tabita FR (2001) A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci USA 98:4397–4402CrossRefPubMedGoogle Scholar
  24. Hanson TE, Tabita FR (2003) Insights into the stress response and sulfur metabolism revealed by proteome analysis of a Chlorobium tepidum mutant lacking the Rubisco-like protein. Photosynth Res 78:231–248CrossRefGoogle Scholar
  25. Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna–Matthews–Olson protein) gene sequences. Int J Syst Evol Microbiol 53:941–951CrossRefPubMedGoogle Scholar
  26. Linden H, Misawa N, Saito T, Sandmann G (1994) A novel carotenoid biosynthesis gene coding for ζ-carotene desaturase—functional expression, sequence and phylogenetic origin. Plant Mol Biol 24:369–379PubMedGoogle Scholar
  27. Madigan MT, Brock TD (1975) Photosynthetic sulfide oxidation by Chloroflexus aurantiacus, a filamentous, photosynthetic, gliding bacterium. J Bacteriol 122:782–784PubMedGoogle Scholar
  28. Maresca JA, Gomez Maqueo Chew A, Ros Ponsatí M, Frigaard N-U, Bryant DA (2004) The bchU gene of Chlorobium tepidum encodes the C-20 methyltransferase in bacteriochlorophyll c biosynthesis. J Bacteriol 186:2558–2566CrossRefPubMedGoogle Scholar
  29. Martinez-Planells A, Arellano JB, Borrego CA, López-Iglesias C, Gich F, Garcia-Gil J (2002) Determination of the topography and biometry of chlorosomes by atomic force microscopy. Photosynth Res 71:83–90CrossRefGoogle Scholar
  30. Melø TB, Frigaard N-U, Matsuura K, Naqvi KR (2000) Electronic energy transfer involving carotenoid pigments in chlorosomes of two green bacteria: Chlorobium tepidum and Chloroflexus aurantiacus. Spectrochim Acta A 56:2001–2010Google Scholar
  31. Montaño GA, Bowen BP, LaBelle JT, Woodbury NW, Pizziconi VB, Blankenship RE (2003a) Characterization of Chlorobium tepidum chlorosomes: a calculation of bacteriochlorophyll c per chlorosome and oligomer modeling. Biophys J 85:2560–2565PubMedGoogle Scholar
  32. Montaño GA, Wu HM, Lin S, Brune DC, Blankenship RE (2003b) Isolation and characterization of the B798 light-harvesting baseplate from the chlorosomes of Chloroflexus aurantiacus. Biochemistry 42:10246–10251CrossRefPubMedGoogle Scholar
  33. Narita S, Taketani S, Inokuchi H (1999) Oxidation of protoporphyrinogen IX in Escherichia coli is mediated by the aerobic coproporphyrinogen oxidase. Mol Gen Genet 21:1012–1020Google Scholar
  34. Niedermeier G, Shiozawa JA, Lottspeich F, Feick RG (1994) The primary structure of two chlorosome proteins from Chloroflexus aurantiacus. FEBS Lett 342:61–65CrossRefPubMedGoogle Scholar
  35. Ouchane S, Steunou A-S, Picaud M, Astier C (2004) Aerobic and anaerobic Mg-protoporphyrin monomethyl ester cyclases in purple bacteria. J Biol Chem 279:6385–6394CrossRefPubMedGoogle Scholar
  36. Overmann J, Cypionka H, Pfennig N (1992) An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 37:150–155Google Scholar
  37. Paulsen H (1999) Carotenoids and the assembly of light-harvesting complexes. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The photochemistry of carotenoids. Kluwer, Dordrecht, pp 123–135Google Scholar
  38. Pierson BK, Castenholz RW (1974a) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24PubMedGoogle Scholar
  39. Pierson BK, Castenholz RW (1974b) Studies of pigments and growth in Chloroflexus aurantiacus, a phototrophic filamentous bacterium. Arch Microbiol 100:283–305Google Scholar
  40. Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SY, Blankenship RE (2002) Whole-genome analysis of photosynthetic prokaryotes. Science 298:1616–1620CrossRefPubMedGoogle Scholar
  41. Sakuragi Y, Frigaard N-U, Shimada K, Matsuura K (1999) Association of bacteriochlorophyll a with the CsmA protein in chlorosomes of the photosynthetic green filamentous bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 1413:172–180CrossRefPubMedGoogle Scholar
  42. Steensgaard DB, Wackerbarth H, Hildebrandt P, Holzwarth AR (2000) Diastereoselective control of bacteriochlorophyll e aggregation. 31-S-BChl e is essential for the formation of chlorosome-like aggregates. J Phys Chem B 104:10379–10386CrossRefGoogle Scholar
  43. Takaichi S (1999) Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The photochemistry of carotenoids. Kluwer, Dordrecht, pp 39–69Google Scholar
  44. Takaichi S, Wang ZY, Umetsu M, Nozawa T, Shimada K, Madigan MT (1997) New carotenoids from the thermophilic green sulfur bacterium Chlorobium tepidum: 1′,2′-dihydro-γ-carotene, 1′,2′-dihydrochlorobactene, and OH-chlorobactene glucoside ester, and the carotenoids composition of different strains. Arch Microbiol 168:270–276CrossRefPubMedGoogle Scholar
  45. Vassilieva EV, Antonkine ML, Zybailov BL, Yang F, Jakobs CU, Golbeck JH, Bryant DA (2001) Electron transfer may occur in the chlorosome envelope: the CsmI and CsmJ proteins of chlorosomes are 2Fe–2S ferredoxins. Biochemistry 40:464–473CrossRefPubMedGoogle Scholar
  46. Wahlund TM, Woese CR, Castenholz RW, Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch Microbiol 156:81–90Google Scholar
  47. Xiong J, Fischer WM, Inoue K, Nakahara M, Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289:1724–1730CrossRefPubMedGoogle Scholar
  48. Yanyushin MF, Blankenship RE, del Rosario M, Brune DC (2004) Characterization of a new class of membrane-bound oxidoreductases in the green bacterium Chloroflexus aurantiacus. Int J Astrobiol 3 [Suppl 1]:49Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations