Advertisement

Archives of Microbiology

, Volume 182, Issue 5, pp 354–363 | Cite as

Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis

  • Roman Netzer
  • Malgorzata Krause
  • Doris Rittmann
  • Petra G. Peters-Wendisch
  • Lothar Eggeling
  • Volker F. Wendisch
  • Hermann Sahm
Original Paper

Abstract

In many bacteria, pyruvate kinase serves a well-defined function in glycolysis, catalyzing an ATP-generating reaction. However, its role during growth on carbon sources requiring glucoeneogenesis is less well investigated. We analyzed a defined pyruvate kinase gene (pyk) deletion mutant of Corynebacterium glutamicum, which is unable to grow on ribose as sole carbon source. Unexpectedly, the pyk deletion mutant was also unable to grow on acetate or citrate as sole carbon sources unless low amounts of pyruvate were added to the growth medium. A spontaneous suppressor mutant of the pyk deletion strain that regained the ability to grow on acetate was isolated. DNA microarray experiments revealed increased expression of the malic enzyme gene malE. The point mutation upstream of malE identified in this mutant was responsible for the loss of carbon-source-dependent regulation, as revealed by transcriptional fusion analysis. Overexpression of malE was sufficient to restore growth of the pyk deletion strain on acetate or citrate. The requirement of increased malic enzyme levels to re-route the carbon flux at the interface between glycolysis, gluconeogenesis and the tricarboxylic acid cycle in order to compensate for the absence of pyruvate kinase indicates a metabolic flux bifurcation at the metabolic node phosphoenolpyruvate. Whereas during growth of C. glutamicum on acetate or citrate most of the phosphoenolpyruvate generated from oxaloacetate is metabolized in gluconeogenesis, a fraction is converted by pyruvate kinase in the glycolytic direction to sustain proper pyruvate availability for biomass synthesis.

Keywords

Sole Carbon Source Pyruvate Kinase Malic Enzyme Pyruvate Carboxylase Corynebacterium Glutamicum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank Christian Lange and Tino Polen for help with DNA microarray experiments. Malgorzata Krause received an ERASMUS fellowship from the European Union. Roman Netzer and Petra Peters-Wendisch acknowledge support from the Deutsche Bundesstiftung Umwelt (grant AZ13037) and Hermann Sahm acknowledges support by the Fonds der Chemischen Industrie. Roman Netzer and Malgorzata Krause contributed equally to this study.

References

  1. Abe S, Takayama K, Kinoshita S (1967) Taxonomical studies on glutamic acid-producing bacteria. J Gen Appl Microbiol 13:279–301Google Scholar
  2. Al Zaid Siddiquee K, Arauzo-Bravo MJ, Shimizu K (2003) Metabolic flux analysis of pykF gene knockout Escherichia coli based on (13)C-labeling experiments together with measurements of enzyme activities and intracellular metabolite concentrations. Appl Microbiol Biotechnol 63:407–417CrossRefPubMedGoogle Scholar
  3. Bendt AK, Burkovski A, Schaffer S, Bott M, Farwick M, Hermann T (2003) Towards a phosphoproteome map of Corynebacterium glutamicum. Proteomics 3:1637–1646CrossRefPubMedGoogle Scholar
  4. Chao YP, Liao JC (1994) Metabolic responses to substrate futile cycling in Escherichia coli. J Biol Chem 269:5122–5126PubMedGoogle Scholar
  5. Chao YP, Patnaik R, Roof WD, Young RF, Liao JC (1993) Control of gluconeogenic growth by pps and pck in Escherichia coli. J Bacteriol 175:6939–6944PubMedGoogle Scholar
  6. Diesterhaft MD, Freese E (1973) Role of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and malic enzyme during growth and sporulation of Bacillus subtilis. J Biol Chem 248:6062–6070PubMedGoogle Scholar
  7. Dominguez H, Rollin C, Guyonvarch A, Guerquin-Kern JL, Cocaign-Bousquet M, Lindley ND (1998) Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur J Biochem 254:96–102CrossRefPubMedGoogle Scholar
  8. Eikmanns BJ, Thum-Schmitz N, Eggeling L, Lüdtke K, Sahm H (1994) Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140:1817–1828PubMedGoogle Scholar
  9. Eikmanns BJ, Rittmann D, Sahm H (1995) Cloning, sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme. J Bacteriol 177:774–782PubMedGoogle Scholar
  10. Emmerling M, Dauner M, Ponti A, Fiaux J, Hochuli M, Szyperski T, Wuthrich K, Bailey JE, Sauer U (2002) Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. J Bacteriol 184:152–164CrossRefPubMedGoogle Scholar
  11. Flores S, Gosset G, Flores N, de Graaf AA, Bolivar F (2002) Analysis of carbon metabolism in Escherichia coli strains with an inactive phosphotransferase system by (13)C labeling and NMR spectroscopy. Metab Eng 4:124–137CrossRefPubMedGoogle Scholar
  12. Fry B, Zhu T, Domach MM, Koepsel RR, Phalakornkule C, Ataai MM (2000) Characterization of growth and acid formation in a Bacillus subtilis pyruvate kinase mutant. Appl Environ Microbiol 66:4045–4049CrossRefPubMedGoogle Scholar
  13. Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ (2003) Acetate metabolism and its regulation in Corynebacterium glutamicum. J Biotechnol 104:99–122CrossRefPubMedGoogle Scholar
  14. Gerstmeir R, Cramer A, Dangel P, Schaffer S, Eikmanns BJ (2004) RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol 186:2798–2809CrossRefPubMedGoogle Scholar
  15. Gourdon P, Baucher MF, Lindley ND, Guyonvarch A (2000) Cloning of the malic enzyme gene from Corynebacterium glutamicum and role of the enzyme in lactate metabolism. Appl Environ Microbiol 66:2981–2987CrossRefPubMedGoogle Scholar
  16. Grant SGN, Jessee J, Bloom FR, Hanahan D (1990) Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA 87:4645–4649PubMedGoogle Scholar
  17. Gubler M, Jetten M, Lee SH, Sinskey AJ (1994) Cloning of the pyruvate kinase gene (pyk) of Corynebacterium glutamicum and site-specific inactivation of pyk in a lysine-producing Corynebacterium lactofermentum strain. Appl Environ Microbiol 60:2494–2500PubMedGoogle Scholar
  18. Hanahan D (1985) Techniques for transformation of Escherichia coli. In: Glover DM (ed) DNA cloning, vol 1. IRL, Oxford, pp 109–136Google Scholar
  19. Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172CrossRefPubMedGoogle Scholar
  20. Ishige T, Krause M, Bott M, Wendisch VF, Sahm H (2003) The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J Bacteriol 185:4519–4529CrossRefPubMedGoogle Scholar
  21. Jacoby M, Ngouoto-Nkili CE, Burkovski A (1999) Construction and application of new Corynebacterium glutamicum vectors. Biotechnol Tech 13:437–441CrossRefGoogle Scholar
  22. Jetten MS, Sinskey AJ (1995) Purification and properties of oxaloacetate decarboxylase from Corynebacterium glutamicum. Antonie Van Leeuwenhoek 67:221–227PubMedGoogle Scholar
  23. Jetten MS, Gubler ME, Lee SH, Sinskey AJ (1994) Structural and functional analysis of pyruvate kinase from Corynebacterium glutamicum. Appl Environ Microbiol 60:2501–2507PubMedGoogle Scholar
  24. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25CrossRefPubMedGoogle Scholar
  25. Keilhauer C, Eggeling L, Sahm H (1993) Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175:5595–5603PubMedGoogle Scholar
  26. Khodursky AB, Bernstein JA, Peter BJ, Rhodius V, Wendisch VF, Zimmer DP (2003) Escherichia coli spotted double-strand DNA microarrays: RNA extraction, labeling, hybridization, quality control, and data management. Methods Mol Biol 224:61–78CrossRefPubMedGoogle Scholar
  27. Kiefer P, Heinzle E, Wittmann C (2002) Influence of glucose, fructose and sucrose as carbon sources on kinetics and stoichiometry of lysine production by Corynebacterium glutamicum. J Ind Microbiol Biotechnol 28:338–343CrossRefPubMedGoogle Scholar
  28. Kramer R, Lambert C, Hoischen C, Ebbighausen H (1990) Uptake of glutamate in Corynebacterium glutamicum. 1. Kinetic properties and regulation by internal pH and potassium. Eur J Biochem 194:929–935PubMedGoogle Scholar
  29. Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H (2003) Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of l-valine. Appl Environ Microbiol 69:2521–2531CrossRefPubMedGoogle Scholar
  30. Lehnen D, Blumer C, Polen T, Wackwitz B, Wendisch VF, Unden G (2002) LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli. Mol Microbiol 45:521–532CrossRefPubMedGoogle Scholar
  31. Marx A, deGraaf AA, Wiechert W, Eggeling L, Sahm H (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol Bioeng 49:111–129CrossRefGoogle Scholar
  32. Medina V, Pontarollo R, Glaeske D, Tabel H, Goldie H (1990) Sequence of the pckA gene of Escherichia coli K-12: relevance to genetic and allosteric regulation and homology of E. coli phosphoenolpyruvate carboxykinase with the enzymes from Trypanosoma brucei and Saccharomyces cerevisiae. J Bacteriol 172:7151–7156PubMedGoogle Scholar
  33. Murai T, Tokushige M, Nagai J, Katsuki H (1971) Physiological functions of NAD- and NADP-linked malic enzymes in Escherichia coli. Biochem Biophys Res Commun 43:875–881PubMedGoogle Scholar
  34. Niersbach M, Kreuzaler F, Geerse RH, Postma PW, Hirsch HJ (1992) Cloning and nucleotide sequence of the Escherichia coli K-12 ppsA gene, encoding PEP synthase. Mol Gen Genet 231:332–336PubMedGoogle Scholar
  35. Norrander JM, Kempe T, Messing J (1983) Construction of improved M13 vectors using oligdeoxynucleotide-directed mutagenesis. Gene 26:101–106CrossRefPubMedGoogle Scholar
  36. Oh MK, Rohlin L, Kao KC, Liao JC (2002) Global expression profiling of acetate-grown Escherichia coli. J Biol Chem 277:13175–13183CrossRefPubMedGoogle Scholar
  37. Petersen S, de Graaf AA, Eggeling L, Mollney M, Wiechert W, Sahm H (2000) In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum. J Biol Chem 275:35932–35941CrossRefPubMedGoogle Scholar
  38. Peters-Wendisch P, Eikmanns BJ, Thierbach G, Bachmann B, Sahm H (1993) Phosphoenolpyruvate carboxylase in Corynebacterium glutamicum is dispensable for growth and lysine production. FEMS Microbiol Lett 112:269–274CrossRefGoogle Scholar
  39. Peters-Wendisch P, Wendisch VF, Paul S, Eikmanns BJ, Sahm H (1997) Pyruvate carboxylase as an anaplerotic enzyme in Corynebacterium glutamicum. Microbiology 143:1095–1103Google Scholar
  40. Peters-Wendisch PG, Kreutzer C, Kalinowski J, Patek M, Sahm H, Eikmanns BJ (1998) Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene. Microbiology 144:915–927PubMedGoogle Scholar
  41. Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Möckel B, Sahm H, Eikmanns BJ (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3:295–300PubMedGoogle Scholar
  42. Polen T, Wendisch VF (2004) Genome-wide expression analysis in amino acid producing bacteria using DNA microarrays. Appl Biochem Biotechnol 118:215–232CrossRefPubMedGoogle Scholar
  43. Polen T, Rittmann D, Wendisch VF, Sahm H (2003) DNA microarray analyses of the long-term adaptive response of Escherichia coli to acetate and propionate. Appl Environ Microbiol 69:1759–1774CrossRefPubMedGoogle Scholar
  44. van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545CrossRefPubMedGoogle Scholar
  45. van der Rest ME, Frank C, Molenaar D (2000) Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli. J Bacteriol 182:6892–6899CrossRefPubMedGoogle Scholar
  46. Rhodius V, Van Dyk TK, Gross C, LaRossa RA (2002) Impact of genomic technologies on studies of bacterial gene expression. Annu Rev Microbiol 56:599–624CrossRefPubMedGoogle Scholar
  47. Riedel C, Rittmann D, Dangel P, Mockel B, Petersen S, Sahm H, Eikmanns BJ (2001) Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. J Mol Microbiol Biotechnol 3:573–583PubMedGoogle Scholar
  48. Rittmann D, Schaffer S, Wendisch VF, Sahm H (2003) Fructose-1,6-bisphosphatase from Corynebacterium glutamicum: expression and deletion of the fbp gene and biochemical characterization of the enzyme. Arch Microbiol 180:285–292CrossRefPubMedGoogle Scholar
  49. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratoy, Cold Spring HarborGoogle Scholar
  50. Schäfer A, Kalinowski J, Pühler A (1994) Increased fertility of Corynebacterium glutamicum recipients in intergeneric matings with Escherichia coli after stress exposure. Appl Environ Microbiol 60:756–759PubMedGoogle Scholar
  51. Shaw WV (1975) Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol 43:737–755CrossRefPubMedGoogle Scholar
  52. Vasicova P, Abrhamova Z, Nesvera J, Patek M, Sahm H, Eikmanns B (1998) Integrative and autonomously replicating vectors for analysis of promoters in Corynebacterium glutamicum. Biotechnol Tech 12:743–746CrossRefGoogle Scholar
  53. Velayudhan J, Kelly DJ (2002) Analysis of gluconeogenic and anaplerotic enzymes in Campylobacter jejuni: an essential role for phosphoenolpyruvate carboxykinase. Microbiology 148:685–694PubMedGoogle Scholar
  54. Wagner A (2000) Robustness against mutations in genetic networks of yeast. Nat Genet 24:355–361CrossRefPubMedGoogle Scholar
  55. Wendisch VF (2003) Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J Biotechnol 104:273–285CrossRefPubMedGoogle Scholar
  56. Wendisch VF, de Graaf AA, Sahm H, Eikmanns BJ (2000) Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J Bacteriol 182:3088–3096CrossRefPubMedGoogle Scholar
  57. Wendisch VF, Zimmer DP, Khodursky A, Peter B, Cozzarelli N, Kustu S (2001) Isolation of Escherichia coli mRNA and comparison of expression using mRNA and total RNA on DNA microarrays. Anal Biochem 290:205–213CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Roman Netzer
    • 1
  • Malgorzata Krause
    • 1
  • Doris Rittmann
    • 1
  • Petra G. Peters-Wendisch
    • 1
  • Lothar Eggeling
    • 1
  • Volker F. Wendisch
    • 1
  • Hermann Sahm
    • 1
  1. 1.Institute of Biotechnology 1Research Centre JülichJuelichGermany

Personalised recommendations