Archives of Microbiology

, Volume 182, Issue 5, pp 346–353

Isogenic auxotrophic mutant strains in the Aspergillus fumigatus genome reference strain AF293

  • Tao Xue
  • Cuong K. Nguyen
  • Angela Romans
  • Dimitrios P. Kontoyiannis
  • Gregory S. May
Original Paper

Abstract

Aspergillus fumigatus is a ubiquitous fungus that is a frequent opportunistic pathogen in immunosuppressed patients. Because of its role as a pathogen, it is of considerable experimental interest. A set of auxotrophic isogenic strains in the A. fumigatus genome reference strain AF293 has been developed. Using molecular genetic methods, arginine and lysine auxotrophs were made by deletion of argB and lysB, respectively. Transformation of these auxotrophic strains with plasmids carrying argB or lysB, respectively, results in efficient integration at these loci. Finally, these strains are able to form stable diploids, which should further facilitate analysis of gene functions in this fungus. Furthermore, the development of this isogenic set of auxotrophic strains in the AF293 background will enable investigators to study this important opportunistic human pathogen with greater facility.

Keywords

Auxotroph Transformation Homologous recombination 

References

  1. Brown JS, Aufauvre-Brown A, Brown J, Jennings JM, Arst H, Holden DW (2000) Signature-tagged and directed mutagenesis identify PABA synthetase as essential for Aspergillus fumigatus pathogenicity. Mol Microbiol 36:1371–1380CrossRefPubMedGoogle Scholar
  2. Calera JA, Paris S, Monod M, Hamilton AJ, Debeaupuis JP, Diaquin M, Lopez-Medrano R, Leal F, Latge JP (1997) Cloning and disruption of the antigenic catalase gene of Aspergillus fumigatus. Infect Immun 65:4718–4724PubMedGoogle Scholar
  3. Carrol AM, Sweigard JA, Valent B (1994) Improved vectors for selecting resistance to hygromycin. Fungal Genet Newsl 41:22Google Scholar
  4. Cove DJ (1966) The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta 113:51–56PubMedGoogle Scholar
  5. De Lucas JR, Dominguez AI, Higuero Y, Martinez O, Romero B, Mendoza A, Garcia-Bustos JF, Laborda F (2001) Development of a homologous transformation system for the opportunistic human pathogen Aspergillus fumigatus based on the sC gene encoding ATP sulfurylase. Arch Microbiol 176:106–113CrossRefPubMedGoogle Scholar
  6. d’Enfert C (1996) Selection of multiple disruption events in Aspergillus fumigatus using the orotidine-5′-decarboxylase gene, pyrG, as a unique transformation marker. Curr Genet 30:76–82CrossRefPubMedGoogle Scholar
  7. d’Enfert C, Diaquin M, Delit A, Wuscher N, Debeaupuis JP, Huerre M, Latge JP (1996) Attenuated virulence of uridine-uracil auxotrophs of Aspergillus fumigatus. Infect Immun 64:4401–4405PubMedGoogle Scholar
  8. Fincham JR (1989) Transformation in fungi. Microbiol Rev 53:148–170PubMedGoogle Scholar
  9. Firon A, Beauvais A, Latge JP, Couve E, Grosjean-Cournoyer MC, d’Enfert C (2002) Characterization of essential genes by parasexual genetics in the human fungal pathogen Aspergillus fumigatus: impact of genomic rearrangements associated with electroporation of DNA. Genetics 161:1077–1087PubMedGoogle Scholar
  10. Firon A, Villalba F, Beffa R, d’Enfert C (2003) Identification of essential genes in the human fungal pathogen Aspergillus fumigatus by transposon mutagenesis. Eukaryot Cell 2:247–255CrossRefPubMedGoogle Scholar
  11. Fonzi WA, Irwin MY (1993) Isogenic strain construction and gene mapping in Candida albicans. Genetics 134:717–728PubMedGoogle Scholar
  12. Grallert B, Nurse P, Patterson TE (1993) A study of integrative transformation in Schizosaccharomyces pombe. Mol Gen Genet 238:26–32PubMedGoogle Scholar
  13. Grimm C, Kohli J, Murray J, Maundrell K (1988) Genetic engineering of Schizosaccharomyces pombe: a system for gene disruption and replacement using the ura4 gene as a selectable marker. Mol Gen Genet 215:81–86PubMedGoogle Scholar
  14. Hensel M, Arst HN, Aufauvre-Brown A, Holden DW (1998) The role of the Aspergillus fumigatus areA gene in invasive pulmonary aspergillosis. Mol Gen Genet 258:553–557CrossRefPubMedGoogle Scholar
  15. Kwon-Chung KJ, Goldman WE, Klein B, Szaniszlo PJ (1998) Fate of transforming DNA in pathogenic fungi. Med Mycol 36:38–44PubMedGoogle Scholar
  16. Langfelder K, Gattung S, Brakhage AA (2002) A novel method used to delete a new Aspergillus fumigatus ABC transporter-encoding gene. Curr Genet 41:268–274CrossRefPubMedGoogle Scholar
  17. Ma H, Kunes S, Schatz PJ, Botstein D (1987) Plasmid construction by homologous recombination in yeast. Gene 58:201–216CrossRefPubMedGoogle Scholar
  18. Magrini V, Goldman WE (2001) Molecular mycology: a genetic toolbox for Histoplasma capsulatum. Trends Microbiol 9:541–546CrossRefPubMedGoogle Scholar
  19. May GS, Gambino J, Weatherbee JA, Morris NR (1985) Identification and functional analysis of β-tubulin genes by site specific integrative transformation in Aspergillus nidulans. J Cell Biol 101:712–719CrossRefPubMedGoogle Scholar
  20. McDade HC, Cox GM (2001) A new dominant selectable marker for use in Cryptococcus neoformans. Med Mycol 39:151–154PubMedGoogle Scholar
  21. Mellado E, Specht CA, Robbins PW, Holden DW (1996a) Cloning and characterization of chsD, a chitin synthase-like gene of Aspergillus fumigatus. FEMS Microbiol Lett 143:69–76CrossRefPubMedGoogle Scholar
  22. Mellado E, Aufauvre-Brown A, Gow NA, Holden DW (1996b) The Aspergillus fumigatus chsC and chsG genes encode class III chitin synthases with different functions. Mol Microbiol 20:667–679CrossRefPubMedGoogle Scholar
  23. Miller BL, Miller KY, Timberlake WE (1985) Direct and indirect gene replacements in Aspergillus nidulans. Mol Cell Biol 5:1714–1721PubMedGoogle Scholar
  24. Nelson RT, Pryor BA, Lodge JK (2003) Sequence length required for homologous recombination in Cryptococcus neoformans. Fungal Genet Biol 38:1–9CrossRefPubMedGoogle Scholar
  25. Osherov N, May G (2000) Conidial germination in Aspergillus nidulans requires RAS signaling and protein synthesis. Genetics 155:647–656PubMedGoogle Scholar
  26. Osherov N, Mathew J, May GS (2000) Polarity-defective mutants of Aspergillus nidulans. Fungal Genet Biol 31:181–188CrossRefPubMedGoogle Scholar
  27. Osherov N, Kontoyiannis DP, Romans A, May GS (2001) Resistance to itraconazole in Aspergillus nidulans and Aspergillus fumigatus is conferred by extra copies of the A. nidulans P-450 14alpha- demethylase gene, pdmA. J Antimicrob Chemother 48:75–81CrossRefPubMedGoogle Scholar
  28. Prado F, Aguilera A (1994) New in vivo cloning methods by homologous recombination in yeast. Curr Genet 25:180–183PubMedGoogle Scholar
  29. Reichard U, Hung CY, Thomas PW, Cole GT (2000) Disruption of the gene which encodes a serodiagnostic antigen and chitinase of the human fungal pathogen Coccidioides immitis. Infect Immun 68:5830–5838CrossRefPubMedGoogle Scholar
  30. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  31. Staab JF, Sundstrom P (2003) URA3 as a selectable marker for disruption and virulence assessment of Candida albicans genes. Trends Microbiol 11:69–73CrossRefPubMedGoogle Scholar
  32. Tang CM, Smith JM, Arst HN, Holden DW (1994) Virulence studies of Aspergillus nidulans mutants requiring lysine or p-aminobenzoic acid in invasive pulmonary aspergillosis. Infect Immun 62:5255–5260PubMedGoogle Scholar
  33. Upshall A (1986) Genetic and molecular characterization of argB+ transformants of Aspergillus nidulans. Curr Genet 10:593–599PubMedGoogle Scholar
  34. Weidner G, d’Enfert C, Koch A, Mol PC, Brakhage AA (1998) Development of a homologous transformation system for the human pathogenic fungus Aspergillus fumigatus based on the pyrG gene encoding orotidine 5′-monophosphate decarboxylase. Curr Genet 33:378–385CrossRefPubMedGoogle Scholar
  35. Wright AP, Maundrell K, Shall S (1986) Transformation of Schizosaccharomyces pombe by non-homologous, unstable integration of plasmids in the genome. Curr Genet 10:503–508PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Tao Xue
    • 1
  • Cuong K. Nguyen
    • 1
  • Angela Romans
    • 1
  • Dimitrios P. Kontoyiannis
    • 2
  • Gregory S. May
    • 1
  1. 1.The Genes and Development Graduate Program, Division of Pathology and Laboratory Medicine, The University of Texas Graduate School of Biomedical SciencesThe University of Texas M. D. Anderson Cancer CenterHoustonUSA
  2. 2.Department of Infectious Diseases, Infection Control, and Employee HealthThe University of Texas M. D. Anderson Cancer CenterHoustonUSA

Personalised recommendations