Archives of Microbiology

, Volume 182, Issue 2–3, pp 182–192 | Cite as

Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch (Firmicutes)

  • Rob U. Onyenwoke
  • Julia A. Brill
  • Kamyar Farahi
  • Juergen WiegelEmail author
Original Paper


Endospore formation is a specific property found within bacteria belonging to the Gram-type-positive low G+C mol% branch (Firmicutes) of a phylogenetic tree based on 16S rRNA genes. Within the Gram-type-positive bacteria, endospore-formers and species without observed spore formation are widely intermingled. In the present study, a previously reported experimental method (PCR and Southern hybridization assays) and analysis of genome sequences from 52 bacteria and archaea representing sporulating, non-spore-forming, and asporogenic species were used to distinguish non-spore-forming (void of the majority of sporulation-specific genes) from asporogenic (contain the majority of sporulation-specific genes) bacteria. Several sporulating species lacked sequences similar to those of Bacillus subtilis sporulation genes. For some of the genes thought to be sporulation specific, sequences with weak similarity were identified in non-spore-forming bacteria outside of the Gram-type-positive phylogenetic branch and in archaea, rendering these genes unsuitable for the intended classification into sporulating, asporogenic, and non-spore-forming species. The obtained results raise questions regarding the evolution of sporulation among the Firmicutes.


Phylogeny Sporulation genes Dipicolinic acid synthase Small acid soluble protein Asporogenic and non-spore-forming bacteria Lactic acid bacteria Genome sequences Gene evolution 



We thank Mary Ann Moran, for the universal eubacterial primers, and Phil Youngman for help with the spo0A primers. We are indebted to Phyllis Pienta from the ATCC for support of the early stages of this research and P. Stragier for providing us with a copy of his manuscript. We thank Ross Overbeek for the access to sequences in ERGO, and Erko Stackebrandt for sharing with us his unpublished results on our assay.


  1. Angert ER, Brooks AE, Pace NR (1996) Phylogenetic analysis of Metabacterium polyspora: clues to the evolutionary origin of daughter cell production in Epulopiscium species, the largest bacteria. J Bacteriol 178:1451–1456PubMedGoogle Scholar
  2. Ash C, Farrow JAE, Wallbanks S, Collins MD (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small subunit RNA sequences. Lett Appl Microbiol 13:202–206Google Scholar
  3. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147CrossRefPubMedGoogle Scholar
  4. Brill JA, Wiegel J (1997) Differentiation between sporeforming and asporogenic bacteria using a PCR and Southern hybridization based method. J Microbiol Methods 31:29–36CrossRefGoogle Scholar
  5. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JA (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826PubMedGoogle Scholar
  6. Errington J (1993) Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol Rev 57:1–33PubMedGoogle Scholar
  7. Engle M, Li Y, Rainey F, DeBlois S, Mai V, Reichert A, Mayer F, Messner P, Wiegel J (1996) Thermobrachium celere gen nov, sp nov, a rapidly growing thermophilic, alkalitolerant, and proteolytic obligate anaerobe. Int J Syst Bacteriol 46:1025–1033PubMedGoogle Scholar
  8. Farrow JA, Lawson PA, Hippe H, Gauglitz U, Collins MD (1995) Phylogenetic evidence that the gram-negative nonsporulating bacterium Tissierella (Bacteroides) praeacuta is a member of the Clostridium subphylum of the gram-positive bacteria and description of Tissierella creatinini sp. nov. Int J Syst Bacteriol 45:436-440PubMedGoogle Scholar
  9. Garrity GM, Holt JG (2001) Taxonomic outline of the Archaea and Bacteria. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, Berlin Heidelberg New York, pp 119–166Google Scholar
  10. Garrity GM, Bell JA, Lilburn TG (2003) Taxonomic outline of the prokaryotes. In: Bergey’s manual of systematic bacteriology, 2nd edn release 4.0 DOI  10.1007/bergeysoutline200310
  11. Gerhardt P, Marquis RE (1989) Spore thermoresistance mechanisms. In: Smith I, Slepecky RA, Setlow P (eds) Regulation of prokaryotic development. American Society for Microbiology, Washington, DC, pp 43–63Google Scholar
  12. Gibbons NE, Murray RGE (1978) Proposals concerning the higher taxa of the bacteria. Int J Syst Bacteriol 28:1–6Google Scholar
  13. Gould GW (1984) Mechanisms of resistance and dormancy. In: Hurst A, Gould GW (eds) The bacterial spore, vol 2. Academic, London, pp 173–209Google Scholar
  14. Grossman AD (1995) Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Ann Rev Gen 29:477–508CrossRefGoogle Scholar
  15. Hippe H, Andreesen JR, Gottschalk G (1992) The genus Clostridium nonmedical. In: Balows A (ed) The prokaryotes, vol 2. Springer, Berlin Heidelberg New York, pp 1800–1866Google Scholar
  16. Ireton K, Grossman A (1994) DNA-related conditions controlling the initiation of sporulation in Bacillus subtilis. Cell Mol Biol Res 40:193–198Google Scholar
  17. Morse R, O’Hanlon K, Collins MD (2002) Phylogenetic, amino acid content and indel analyses of the beta subunit of DNA-dependent RNA polymerase of Gram-positive and Gram-negative bacteria. Int J Syst Evol Microbiol 52:1477–1488CrossRefPubMedGoogle Scholar
  18. Nakamura K, Hashizume E, Shibata T, Nakamura Y, Mala S, Yamane K (1995) Small cytoplasmic RNA (scRNA) gene from Clostridium perfringens can replace the gene for the Bacillus subtilis scRNA in both growth and sporulation. Microbiology 141:2965–2975PubMedGoogle Scholar
  19. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572CrossRefPubMedGoogle Scholar
  20. Paidhungat M, Ragkousi K, Setlow P (2001) Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca(2+)-dipicolinate. J Bacteriol 183:4886–4893CrossRefPubMedGoogle Scholar
  21. Sauer U, Treuner A, Buchholz M, Santangelo JD, Dürre P (1994) Sporulation and primary sigma factor homologous genes in Clostridium acetobutylicum. J Bacteriol 176:6572–6582Google Scholar
  22. Sauer U, Santangelo JD, Treuner A, Buchholz M, Dürre P (1995) Sigma-factor and sporulation genes in Clostridium. FEMS Microbiol Rev 17:331–340CrossRefPubMedGoogle Scholar
  23. Setlow P (1995) Mechanisms for the prevention of damage to DNA in spores of Bacillus species. Annu Rev Microbiol 49:29–54CrossRefPubMedGoogle Scholar
  24. Setlow P (2001) Resistance of spores of Bacillus species to ultraviolet light. Environ Mol Mutagen 38:97–104CrossRefPubMedGoogle Scholar
  25. Siunov AV, Nikitin DV, Suzina NE, Dmitriev VV, Kuzmin NP, Duda VI (1999) Phylogenetic status of Anaerobacter polyendosporus, an anaerobic, polysporogenic bacterium. Int J Syst Bacteriol 49:1119–1124PubMedGoogle Scholar
  26. Slepecky RA, Hemphill HE (1992) The genus Bacillus—nonmedical. In: Balows A (ed) The prokaryotes, vol 2. Springer, Berlin Heidelberg New York, pp 1663–1698Google Scholar
  27. Sneath PHA (1984) Endospore-forming Gram-positive rods and cocci. In: Sneath PHA (ed) Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, pp 1104–1207Google Scholar
  28. Stragier P (2002) A gene odyssey: exploring the genomes of endospore-forming bacteria. In: Sonenshein AL (ed) Bacillus subtilis and its closest relatives: from genes to cells. ASM, Washington DC, pp 519–525Google Scholar
  29. Stragier P, Losick R (1996) Molecular genetics of sporulation in Bacillus subtilis. Annu Rev Genet 30:297–341CrossRefPubMedGoogle Scholar
  30. Wiegel J (1981) Distinction between the Gram reaction and the Gram-type of bacteria. Int J Syst Bacteriol 31:88Google Scholar
  31. Wiegel J (1992) The anaerobic thermophilic bacteria. In: Kristjansson JK (ed) Thermophilic bacteria. CRC, Boca Raton, pp 105–184Google Scholar
  32. Wiegel J, Quandt L (1982) Determination of the Gram-type using the reaction between polymyxin B and lipopolysaccharides of the outer cell wall of whole bacteria. J Gen Microbiol 128:2261–2270PubMedGoogle Scholar
  33. Wiegel J, Tanner R, Rainey FA (2004) In: Dworkin M (ed) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Springer, New York, http://www.springeronline.comGoogle Scholar
  34. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Rob U. Onyenwoke
    • 1
  • Julia A. Brill
    • 1
  • Kamyar Farahi
    • 1
  • Juergen Wiegel
    • 1
    Email author
  1. 1.Department of Microbiology and Center for Biological Resource RecoveryUniversity of GeorgiaAthensUSA

Personalised recommendations