Archives of Microbiology

, Volume 182, Issue 1, pp 90–95 | Cite as

Anaerobiosis and low specific growth rates enhance hemolysin BL production by Bacillus cereus F4430/73

  • Catherine Duport
  • Séverine Thomassin
  • Gérald Bourel
  • Philippe Schmitt
Short Communication


Bacillus cereus F4430/73 produced the highest levels of hemolysin BL (HBL) when grown under anaerobiosis in MOD medium. Anaerobic cells grown in a chemostat at low specific growth rate (0.1–0.2 h−1) expressed up to sevenfold more HBL than did cells held at a faster growth rate. At 0.2 h−1, the presence of 90 mM glucose resulted in inhibition of HBL production. Glucose was found to repress HBL induction at the mRNA level, indicating the potential involvement of catabolite repression in the regulation of HBL. Based on these data, it is suggested that growth rate could be an effector of catabolite regulation of HBL.


Chemostat RT-PCR Bacillus cereus Enterotoxin Anaerobiosis Growth rate Glucose repression 



We would like to thank Dr R. Dietrich for kindly supplying the anti-L2 antibodies. This work was supported by the French Research Ministry Graduate Fellowship (S. Thomassin).


  1. Agata N, Ohta M, Mori M, Isobe M (1995) A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiol Lett 129:17–20CrossRefPubMedGoogle Scholar
  2. Banerjee-Bhatnagar N (1998) Modulation of Cry IV A toxin protein expression by glucose in Bacillus thuringiensis, israelensis. Biochem Biophys Res Commun 252:402–406CrossRefPubMedGoogle Scholar
  3. Beattie WH, Williams AG (2002) Growth and diarrhoeagenic enterotoxin formation by strains of Bacillus cereus in vitro in controlled fermentations and in situ in food products and a model food system. Food Microbiol 19:329–340CrossRefGoogle Scholar
  4. Beecher DJ, Macmillan JD (1991) Characterization of the components of hemolysin BL from Bacillus cereus. Infect Immun 59:1778–1784PubMedGoogle Scholar
  5. Beecher DJ, Wong AC (1994) Identification and analysis of the antigens detected by two commercial Bacillus cereus diarrheal enterotoxin immunoassay kits. Appl Environ Microbiol 60:4614–4616PubMedGoogle Scholar
  6. Beecher DJ, Wong AC (1997) Tripartite hemolysin BL from Bacillus cereus. Hemolytic analysis of component interactions and a model for its characteristic paradoxical zone phenomenon. J Biol Chem 272:233–239CrossRefPubMedGoogle Scholar
  7. Beecher DJ, Schoeni JL, Wong AC (1995) Enterotoxic activity of hemolysin BL from Bacillus cereus. Infect Immun 63:4423–4428PubMedGoogle Scholar
  8. Bergot CI, Desnier JD, Daudin JC, Labadie JC, Lebert A (1996) Recommendation for calculating growth parameters by optical density measurements. J Microbiol Methods 25:225–232CrossRefGoogle Scholar
  9. Bruckner R, Titgemeyer F (2002) Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209:141–148CrossRefPubMedGoogle Scholar
  10. Buchanan RL, Schultz FJ (1994) Comparison of the Tecra VIA kit, Oxoid BCET-RPLA kit and CHO cell culture assay for the detection of Bacillus cereus diarrhoeal enterotoxin. Lett Appl Microbiol 19:353–356PubMedGoogle Scholar
  11. Carlin F, Guinebretière MH, Choma C, Pasqualini R, Braconnier A, Nguyen-The C (2000) Spore-forming bacteria in commercial cooked, pasteurized and chilled vegetable purées. Food Microbiol 17:153–165Google Scholar
  12. Choma C, Guinebretière MH, Carlin F, Schmitt P, Velge P, Granum PE, Nguyen-The C (2000) Prevalence, characterization and growth of Bacillus cereus in commercial cooked chilled foods containing vegetables. J Appl Microbiol 88:617–625CrossRefPubMedGoogle Scholar
  13. Christiansson A, Naidu AS, Nilsson I, Wadstrom T, Pettersson HE (1989) Toxin production by Bacillus cereus dairy isolates in milk at low temperatures. Appl Environ Microbiol 55:2595–2600PubMedGoogle Scholar
  14. Dietrich R, Fella C, Strich S, Martlbauer E (1999) Production and characterization of monoclonal antibodies against the hemolysin BL enterotoxin complex produced by Bacillus cereus. Appl Environ Microbiol 65:4470–4474PubMedGoogle Scholar
  15. Garcia-Arribas ML, Kramer JM (1990) The effect of glucose, starch, and pH on growth, enterotoxin and haemolysin production by strains of Bacillus cereus associated with food poisoning and non-gastrointestinal infection. Int J Food Microbiol 11:21–33CrossRefPubMedGoogle Scholar
  16. Glatz BA, Goepfert JM (1976) Defined conditions for synthesis of Bacillus cereus enterotoxin by fermenter-grown cultures. Appl Environ Microbiol 32:400–404PubMedGoogle Scholar
  17. Glatz BA, Goepfert JM (1977) Production of Bacillus cereus enterotoxin in defined media in fermenter-grown cultures. J Food Prot 40:472–474Google Scholar
  18. Gompertz B (1925) On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc 115:513–585Google Scholar
  19. Heinrich JH, Beecher DJ, MacMillan JD, Zilinskas BA (1993) Molecular cloning and characterization of the hblA gene encoding the B component of hemolysin BL from Bacillus cereus. J Bacteriol 175:6760–6766PubMedGoogle Scholar
  20. Ivanova N, Sorokin AI, Anderson I, Galleron N, Candelon B, Kapatral V, Bhattacharyya A, Reznik G, Mikhailova N, Lapidus A, Chu L, Mazur M, Goltsman E, Larsen N, D’Souza M, Walunas T, Grechkin Y, Pusch G, Haselkorn R, Fonstein M, Ehrlich SD, Overbeek R, Kyrpides N (2003) Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423:87–91CrossRefPubMedGoogle Scholar
  21. Kotiranta A, Lounatmaa K, Haapasalo M (2000) Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect 2:189–198CrossRefPubMedGoogle Scholar
  22. Kramer JM, Gilbert RJ (1989) Bacillus cereus and other Bacillus species. In: Doyle MP (ed) Foodborn bacterial pathogens. Marcel Dekker, New York, pp 21–70Google Scholar
  23. Lereclus D, Agaisse H, Grandvalet C, Salamitou S, Gominet M (2000) Regulation of toxin and virulence gene transcription in Bacillus thuringiensis. Int J Med Microbiol 290:295–299PubMedGoogle Scholar
  24. Lund T, Granum PE (1997) Comparison of biological effect of the two different enterotoxin complexes isolated from three different strains of Bacillus cereus. Microbiology 143:3329–3336PubMedGoogle Scholar
  25. Mijakovic I, Poncet S, Galinier A, Monedero V, Fieulaine S, Janin J, Nessler S, Marquez JA, Scheffzek K, Hasenbein S, Hengstenberg W, Deutscher J (2002) Pyrophosphate-producing protein dephosphorylation by HPr kinase/phosphorylase: a relic of early life? Proc Natl Acad Sci USA 99:13442–13447CrossRefPubMedGoogle Scholar
  26. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199PubMedGoogle Scholar
  27. Okstad OA, Gominet M, Purnelle B, Rose M, Lereclus D, Kolsto AB (1999) Sequence analysis of three Bacillus cereus loci carrying PIcR-regulated genes encoding degradative enzymes and enterotoxin. Microbiology 145:3129–3138PubMedGoogle Scholar
  28. Roberts D, Watson GN, Gilbert RJ (1982) Contamination of food plants and plant products with bacteria of public health significance. Soc Appl Bacteriol Symp Ser 10:169–195PubMedGoogle Scholar
  29. Ross RA, Madoff LC, Paoletti LC (1999) Regulation of cell component production by growth rate in the group B Streptococcus. J Bacteriol 181:5389–5394PubMedGoogle Scholar
  30. Ryan PA, Macmillan JD, Zilinskas BA (1997) Molecular cloning and characterization of the genes encoding the L1 and L2 components of hemolysin BL from Bacillus cereus. J Bacteriol 179:2551–2556PubMedGoogle Scholar
  31. Salamitou S, Ramisse F, Brehélin M, Bourguet D, Gilois N, Gominet M, Hernandez E, Lereclus D (2000) The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology 146:2825–2832PubMedGoogle Scholar
  32. Slamti L, Lereclus D (2002) A cell–cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. EMBO J 21:4550–4559CrossRefPubMedGoogle Scholar
  33. Spira WM, Goepfert JM (1975) Biological characteristics of an enterotoxin produced by Bacillus cereus. Can J Microbiol 21:1236–1246PubMedGoogle Scholar
  34. Sutherland AD, Limond AM (1993) Influence of pH and sugars on the growth and production of diarrhoeagenic toxin by Bacillus cereus. J Dairy Res 60:575–580PubMedGoogle Scholar
  35. Suzuki T, Yamasato K (1994) Phylogeny of spore-forming lactic acid bacteria based on 16S rRNA gene sequences. FEMS Microbiol Lett 115:13–17PubMedGoogle Scholar
  36. Zwietering M, Jongenburger I, Rombouts F, Van’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Catherine Duport
    • 1
  • Séverine Thomassin
    • 1
  • Gérald Bourel
    • 1
  • Philippe Schmitt
    • 1
  1. 1.UMR A408 Sécurité et Qualité des Produits d’Origine Végétale, INRA/Université d’AvignonAvignon cedex 9France

Personalised recommendations