Advertisement

Archives of Microbiology

, Volume 182, Issue 2–3, pp 165–174 | Cite as

The role of the sulfur globule proteins of Allochromatium vinosum: mutagenesis of the sulfur globule protein genes and expression studies by real-time RT-PCR

  • Alexander Prange
  • Harald Engelhardt
  • Hans G. Trüper
  • Christiane DahlEmail author
Original Paper

Abstract

During oxidation of reduced sulfur compounds, the purple sulfur bacterium Allochromatium vinosum stores sulfur in the periplasm in the form of intracellular sulfur globules. The sulfur in the globules is enclosed by a protein envelope that consists of the homologous 10.5-kDa proteins SgpA and SgpB and the smaller 8.5-kDa SgpC. Reporter gene fusions of sgpA and alkaline phosphatase showed the constitutive expression of sgpA in A. vinosum and yielded additional evidence for the periplasmic localization of the sulfur globules. Expression analysis of the wild-type sgp genes by quantitative RT-PCR using the LightCycler system showed the constitutive expression of all three sgp genes. The expression of sgpB and sgpC is significantly enhanced under photolithotrophic conditions. Interestingly, sgpB is expressed ten times less than sgpA and sgpC implying that SgpA and SgpC are the “main proteins” of the sulfur globule envelope. Mutants with inactivated sgpA or sgpB did not show any differences in comparison with the wild-type, i.e., the encoded proteins can replace each other, whereas inactivation of sgpC leads to the formation of considerably smaller sulfur globules. This indicates a role of SgpC for globule expansion. A sgpBC double mutant was unable to grow on sulfide and could not form sulfur globules, showing that the protein envelope is indispensible for the formation and deposition of intracellular sulfur.

Keywords

Allochromatium vinosum Sulfur globule proteins Sulfide oxidation Sulfur globules Phototrophic sulfur bacteria 

Abbreviation

Sgp

Sulfur globule protein

sgp

Sulfur globule protein gene

Notes

Acknowledgments

We thank Daniel C Brune (Arizona State University, Tempe, USA) for useful hints concerning HPLC analysis of the sulfur globule proteins, Brigitte Kühlmorgen for skilfull technical assistance with electron microscopy, and Kobchai Pattaragulwanit (Chulalongkorn University, Bangkok, Thailand) for helpful discussions. AP thanks the GEN-IAL GmbH (Troisdorf) for the possibility to perform the LightCycler experiments in their laboratory and the Stiftung der Deutschen Wirtschaft (Studienförderwerk Klaus Murmann) for a doctoral scholarship. This work was supported by the Deutsche Forschungsgemeinschaft (DFG grant Tr 133/26-1,2,3) and the Fonds der Chemischen Industrie (HGT).

References

  1. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Struhl K (1994–2000) Current protocols in molecular biology. Wiley, LondonGoogle Scholar
  2. Bazaral M, Helinski DR (1968) Circular DNA from colicinogenic factors E1, E2 and E3 from Escherichia coli. J Mol Biol 36:185–194PubMedGoogle Scholar
  3. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  4. Brickman E, Beckwith J (1975) Analysis of the regulation of Escherichia coli alkaline phosphatase synthesis using deletions and ϕ80 transducing phages. J Mol Biol 96:307–316PubMedGoogle Scholar
  5. Brune DC (1989) Sulfur oxidation by photrophic bacteria. Biochim Biophys Acta 975:189–221PubMedGoogle Scholar
  6. Brune DC (1995) Isolation of and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina. Arch Microbiol 163:391–399CrossRefPubMedGoogle Scholar
  7. Carothers AM, Urlab, G, Mucha J, Grunburger D, Chasin LA (1989) Point mutation analysis in a mammalian gene: rapid preparation of total RNA, PCR amplification of cDNA and Taq-sequencing by a novel method. BioTechniques 7:494–499PubMedGoogle Scholar
  8. Dahl C (1996) Insertional gene inactivation in a phototrophic sulphur bacterium: APS-reductase-deficient mutants of Chromatium vinosum. Microbiol UK 142:3363–3372Google Scholar
  9. Dahl C (1999) Deposition and oxidation of polymeric sulfur in prokaryotes. In: Steinbüchel A (ed) Biochemical principles and mechanisms of biosynthesis and biodegradation of polymers. Wiley-VCH, Weinheim, pp 27–34Google Scholar
  10. Dahl C, Speich N, Trüper HG (1994) Enzymology and molecular biology of sulfate reduction in the extremely thermophilic archaeon Archaeoglobus fulgidus. Methods Enzymol 243:331–349CrossRefPubMedGoogle Scholar
  11. Derman AI, Prinz WA, Belin D, Beckwith J (1993) Mutation that allows disulfide bond formation in the cytoplasm of Escherichia coli. Science 262:1744–1747PubMedGoogle Scholar
  12. Ehrmann M, Boyd D, Beckwith J (1990) Genetic analysis of membrane topology by a sandwich gene fusion approach. Proc Natl Acad Sci USA 87:7574–7578PubMedGoogle Scholar
  13. Eisen JA et al (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci USA 99:9509–9514CrossRefPubMedGoogle Scholar
  14. Fellay R, Frey J, Krisch HM (1987) Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vivo insertional mutagenesis of Gram-negative bacteria. Gene 52:147–154CrossRefPubMedGoogle Scholar
  15. Glauert AM, Lewis PR (1998) Biological specimen preparation for transmission electron microscopy. In: Glauert, AM (ed) Practical methods in electron microscopy, vol 17. Portland, LondonGoogle Scholar
  16. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580PubMedGoogle Scholar
  17. Imhoff JF, Süling J, Petri R (1998) Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa and Thermochromatium. Int J Syst Bacteriol 48:1129–1143PubMedGoogle Scholar
  18. Kinsman R, Walsby AE, Hayes PK (1995) GvpCs with reduced numbers of repeating sequence elements bind to and strengthen cyanobacterial gas vesicles. Mol Microbiol 17:147–154PubMedGoogle Scholar
  19. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM,II, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176CrossRefPubMedGoogle Scholar
  20. Leenhouts KJ, Kok J, Venema G (1990) Stability of integrated plasmids in the chromosome of Lactococcus lactis. Appl Environ Microbiol 56:2726–2735Google Scholar
  21. Mas J, van Gemerden H (1987) Influence of sulfur accumulation and composition of sulfur globule on cell volume and buoyant density of Chromatium vinosum. Arch Microbiol 146:362–369Google Scholar
  22. Michaelis S, Inouye H, Oliver, D, Beckwith J (1983) Mutations that alter the signal sequence of alkaline phosphatase in Escherichia coli. J Bacteriol 154:366–374PubMedGoogle Scholar
  23. Murray V (1989) Improved double-stranded DNA sequencing using the linear polymerase chain reaction. Nucleic Acid Res 17:8889PubMedGoogle Scholar
  24. Nicolson GL, Schmidt GL (1971) Structure of the Chromatium sulfur particle and its protein membrane. J Bacteriol 105:1142–1148PubMedGoogle Scholar
  25. Offner S, Ziese U, Wanner G, Typke D, Pfeiffer F (1998) Structural characteristics of halobacterial gas vesicles. Microbiol UK 152:61–87Google Scholar
  26. Offner S, Hofacker A, Wanner G, Pfeiffer F (2000) Eight of fourteen gvp genes are sufficient for formation of gas vesicles in halophilic archaea. J Bacteriol 182:4328–4336CrossRefPubMedGoogle Scholar
  27. Pattaragulwanit K, Dahl C (1995) Development of a genetic system for a purple sulfur bacterium: conjugative plasmid transfer in Chromatium vinosum. Arch Microbiol 164:217–222CrossRefGoogle Scholar
  28. Pattaragulwanit K, Brune DC, Trüper HG, Dahl C (1998) Molecular genetic evidence for extracytoplasmatic localization of sulfur globules in Chromatium vinosum. Arch Microbiol 169:434–444CrossRefPubMedGoogle Scholar
  29. Pfennig N, Trüper HG (1992) The family Chromatiaceae. In: Balows A, Trüper HG, Dworkin M Harder W, Schleifer KH (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, 2nd edn. Springer, New York, pp 3200–3221Google Scholar
  30. Pott AS, Dahl C (1998) Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. Microbiol UK 144:1881–1894Google Scholar
  31. Prange A, Arzberger I, Engemann, C, Modrow H, Schumann O, Trüper HG, Steudel R, Dahl C, Hormes J (1999) In situ analysis of sulfur in the sulfur globules of phototrophic sulfur bacteria by X-ray absorption near edge spectroscopy. Biochim Biophys Acta 1428:446–454CrossRefPubMedGoogle Scholar
  32. Prange A, Chauvistré R, Modrow H, Hormes J, Trüper HG, Dahl C (2002) Quantitative speciation of sulfur in bacterial sulfur globules: X-ray absorption spectroscopy reveals at least three different species of sulfur. Microbiol UK 148:267–276Google Scholar
  33. Rethmeier J, Rabenstein A, Langer M, Fischer U (1997) Detection of traces of oxidized and reduced sulfur compounds in small samples by combination of different high-performance liquid chromatography methods. J Chromatogr A 760:295–302CrossRefGoogle Scholar
  34. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning—a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  35. Schlegel HG (1963) Die Schwefelpurpurbakterien. Umschau 18:573–577Google Scholar
  36. Schmidt GL, Nicolson GL, Kamen MD (1971) Composition of the sulfur particle of Chromatium vinosum strain D. J Bacteriol 105:1137–1141PubMedGoogle Scholar
  37. Seibl R, Höltke, H-J, Rüger R, Meindl A, Zauchau HG, Raβhofer R, Roggendorf M, Wolf H, Arnold N, Wienberg J, Kessler C (1990) Nonradioactive labeling and detection of nucleic acids. Biol Chem Hoppe Seyler 371:939–951PubMedGoogle Scholar
  38. Shively JM, Bryant DA, Fuller RC, Konopka AE, Stevens SE, Strohl WR (1989) Functional inclusions in prokaryotic cells. Int Rev Cytol 113:35–100Google Scholar
  39. Siefert E, Pfennig N (1984) Convenient method to prepare neutral sulfide solution for cultivation of phototrophic sulfur bacteria. Arch Microbiol 139:100–101Google Scholar
  40. Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technol 1:784–791Google Scholar
  41. Strohl WR, Geffers I, Larkin JM (1981) Structure of the sulfur inclusion envelopes from four Beggiatoas. Curr Microbiol 6:75–79Google Scholar
  42. Strohl WR, Howard KS, Larkin JM (1982) Ultrastructure of Beggiatoa alba strain B15LD. J Gen Microbiol 128:73–84Google Scholar
  43. Then J (1984) Beiträge zur Sulfidoxidation durch Ectothiorhodospira abdelmalekii und Ectothiorhodospira halochloris. Doctoral thesis, University of Bonn, GermanyGoogle Scholar
  44. Trüper HG (1981) Photolithotrophic sulfur oxidation. In: Bothe H, Trebst A (eds) Biology of inorganic nitrogen and sulfur. Springer, Berlin, pp 199–211Google Scholar
  45. Trüper HG, Pfennig, N (1966) Sulphur metabolism in Thiorhodaceae. III. Storage and turnover of thiosulphate sulphur in Thiocapsa floridana and Chromatium species. Antonie van Leeuwenhoek J Microbiol Serol 32:261–276Google Scholar
  46. Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94-144PubMedGoogle Scholar
  47. Weaver PF, Wall JD, Gest H (1975) Characterization of Rhodopseudomonas capsulata. Arch Microbiol 105:207–216PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Alexander Prange
    • 1
    • 2
    • 3
  • Harald Engelhardt
    • 4
  • Hans G. Trüper
    • 1
  • Christiane Dahl
    • 1
    Email author
  1. 1.Institut für Mikrobiologie & BiotechnologieRheinische Friedrich-Wilhelms-Universität BonnBonnGermany
  2. 2.Institut für Pflanzenkrankheiten, Abteilung Landwirtschaftliche und Lebensmittel-MikrobiologieRheinische Friedrich-Wilhelms-Universität BonnBonnGermany
  3. 3.IBELIN GbRBrilonGermany
  4. 4.Max-Planck-Institut für BiochemieMartinsriedGermany

Personalised recommendations