Archives of Microbiology

, Volume 182, Issue 2–3, pp 254–258

Sulfoacetate generated by Rhodopseudomonas palustris from taurine

  • Karin Denger
  • Sonja Weinitschke
  • Klaus Hollemeyer
  • Alasdair M. Cook
Short Communication

Abstract

Genes thought to encode (a) the regulator of taurine catabolism under carbon-limiting or nitrogen-limiting conditions and (b) taurine dehydrogenase were found in the genome of Rhodopseudomonas palustris. The organism utilized taurine quantitatively as a sole source of nitrogen (but not of carbon) for aerobic and photoheterotrophic growth. No sulfate was released, and the C-sulfonate bond was recovered stoichiometrically as sulfoacetate, which was identified by mass spectrometry. An inducible sulfoacetaldehyde dehydrogenase was detected. R. palustris thus contains a pathway to generate a natural product that was previously believed to be formed solely from sulfoquinovose.

Keywords

Sulfoacetate formation Taurine deamination Taurine dehydrogenase Sulfoacetaldehyde dehydrogenase Rhodopseudomonas palustris 

References

  1. Benson AA (1963) The plant sulfolipid. Adv Lipid Res 1:387–394Google Scholar
  2. Brüggemann C, Denger K, Cook AM, Ruff J (2004) Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans. Microbiology (Reading, UK) 150:805–816Google Scholar
  3. Chien C-C, Leadbetter ER, Godchaux W III (1999) Rhodococcus spp. utilize taurine (2-aminoethanesulfonate) as sole source of carbon, energy, nitrogen and sulfur for aerobic respiratory growth. FEMS Microbiol Lett 176:333–337CrossRefGoogle Scholar
  4. Cook AM (1987) Biodegradation of s-triazine xenobiotics. FEMS Microbiol Rev 46:93–116CrossRefGoogle Scholar
  5. Cook AM, Denger K (2002) Dissimilation of the C2 sulfonates. Arch Microbiol 179:1–6CrossRefPubMedGoogle Scholar
  6. Cook AM, Hütter R (1981) s-Triazines as nitrogen sources for bacteria. J Agric Food Chem 29:1135–1143Google Scholar
  7. Cunningham C, Tipton KF, Dixon HBF (1998) Conversion of taurine into N-chlorotaurine (taurine chloramine) and sulphoacetaldehyde in response to oxidative stress. Biochem J 330:939–945PubMedGoogle Scholar
  8. Denger K, Ruff J, Rein U, Cook AM (2001) Sulfoacetaldehyde sulfo-lyase [EC 4.4.1.12] from Desulfonispora thiosulfatigenes: purification, properties and primary structure. Biochem J 357:581–586CrossRefPubMedGoogle Scholar
  9. Denger K, Ruff J, Schleheck D, Cook AM (2004) Rhodococcus opacus expresses the xsc gene to utilize taurine as a carbon source or as a nitrogen source but not as a sulfur source. Microbiology 150:1859–1867CrossRefPubMedGoogle Scholar
  10. Gesellschaft Deutscher Chemiker (1996) German standard methods for the laboratory examination of water, waste water and sludge. VCH, WeinheimGoogle Scholar
  11. Graham DE, Xu H, White RH (2002) Identification of coenzyme M biosynthetic phosphosulfolactate synthase: a new family of sulfonate biosynthesizing enzymes. J Biol Chem 277:13421–13429CrossRefPubMedGoogle Scholar
  12. Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163PubMedGoogle Scholar
  13. Kertesz MA (2000) Riding the sulfur cycle—metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol Rev 24:135–175CrossRefPubMedGoogle Scholar
  14. Kertesz MA (2001) Bacterial transporters for sulfate and organosulfur compounds. Res Microbiol 152:279–290CrossRefPubMedGoogle Scholar
  15. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685Google Scholar
  16. Larimer FW et al (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22:55–61CrossRefPubMedGoogle Scholar
  17. Laue H, Denger K, Cook AM (1997) Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU. Appl Environ Microbiol 63:2016–2021PubMedGoogle Scholar
  18. Lie TL, Leadbetter JR, Leadbetter ER (1998) Metabolism of sulfonic acids and other organosulfur compounds by sulfate-reducing bacteria. Geomicrobiol J 15:135–149Google Scholar
  19. Martelli HL, Benson AA (1964) Sulfocarbohydrate metabolism. 1. Bacterial production and utilization of sulfoacetate. Biochim Biophys Acta 93:169–171CrossRefPubMedGoogle Scholar
  20. Murphy CD, Moss SJ, O’Hagan D (2001) Isolation of an aldehyde dehydrogenase involved in the oxidation of fluoroacetaldehyde to fluoroacetate in Streptomyces cattleya. Appl Environ Microbiol 67:4919–4921CrossRefPubMedGoogle Scholar
  21. Pfennig N (1978) Rhodocyclus purpureus gen. nov. sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28:283–288Google Scholar
  22. Roy AB, Hewlins MJE, Ellis AJ, Harwood JL, White GF (2003) Glycolytic breakdown of sulfoquinovose in bacteria: a missing link in the sulfur cycle. Appl Environ Microbiol 69:6434–6441CrossRefPubMedGoogle Scholar
  23. Ruff J, Denger K, Cook AM (2003) Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation. Biochem J 369:275–285CrossRefPubMedGoogle Scholar
  24. Sörbo B (1987) Sulfate: turbidimetric and nephelometric methods. Methods Enzymol 143:3–6PubMedGoogle Scholar
  25. Thurnheer T, Köhler T, Cook AM, Leisinger T (1986) Orthanilic acid and analogues as carbon sources for bacteria: growth physiology and enzymic desulphonation. J Gen Microbiol 132:1215–1220Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Karin Denger
    • 1
  • Sonja Weinitschke
    • 1
  • Klaus Hollemeyer
    • 2
  • Alasdair M. Cook
    • 1
  1. 1.Fachbereich Biologie der Universität KonstanzKonstanzGermany
  2. 2.Institut für Technische BiochemieUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations