Advertisement

Archives of Microbiology

, Volume 182, Issue 2–3, pp 126–137 | Cite as

F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F420-dependent enzyme involved in O2 detoxification

  • Henning Seedorf
  • Annette Dreisbach
  • Reiner Hedderich
  • Seigo Shima
  • Rudolf K. ThauerEmail author
Original Paper

Abstract

Cell suspensions of Methanobrevibacter arboriphilus catalyzed the reduction of O2 with H2 at a maximal specific rate of 0.4 U (μmol/min) per mg protein with an apparent Km for O2 of 30 μM. The reaction was not inhibited by cyanide. The oxidase activity was traced back to a coenzyme F420-dependent enzyme that was purified to apparent homogeneity and that catalyzed the oxidation of 2 F420H2 with 1 O2 to 2 F420 and 2 H2O. The apparent Km for F420 was 30 μM and that for O2 was 2 μM with a Vmax of 240 U/mg at 37°C and pH 7.6, the pH optimum of the oxidase. The enzyme did not use NADH or NADPH as electron donor or H2O2 as electron acceptor and was not inhibited by cyanide. The 45-kDa protein, whose gene was cloned and sequenced, contained 1 FMN per mol and harbored a binuclear iron center as indicated by the sequence motif H–X–E–X–D–X62H–X18D–X60H. Sequence comparisons revealed that the F420H2 oxidase from M. arboriphilus is phylogenetically closely related to FprA from Methanothermobacter marburgensis (71% sequence identity), a 45-kDa flavoprotein of hitherto unknown function, and to A-type flavoproteins from bacteria (30–40%), which all have dioxygen reductase activity. With heterologously produced FprA from M. marburgensis it is shown that this protein is also a highly efficient F420H2 oxidase and that it contains 1 FMN and 2 iron atoms. The presence of F420H2 oxidase in methanogenic archaea may explain why some methanogens, e.g., the Methanobrevibacter species in the termite hindgut, cannot only tolerate but thrive under microoxic conditions.

Keywords

Type A flavoprotein F420H2 oxidase Rubredoxin oxidase Oxygen detoxification Methanobrevibacter Methanothermobacter Moorella Desulfovibrio Methanogenic archaea 

Abbreviations

FprA

Flavoproteins belonging to the type-A flavoproteins family

Frh

F420-reducing hydrogenase

Hmd

H2-forming methylenetetrahydromethanopterin dehydrogenase

Mtd

F420-dependent methylenetetrahydromethanopterin dehydrogenase

Hrb

High-molecular-mass rubredoxin

Roo

Rubredoxin:oxygen oxidoreductase

Notes

Acknowledgements

This work was supported by the Max-Planck-Gesellschaft, by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie. We thank Dr D. Linder (Gieβen) for N-terminal amino acid sequence determinations via Edman degradation and Dr D.M. Kurtz (Athens, Georgia, USA) for providing purified FprA and Hrb from M. thermoacetica.

References

  1. Abreu IA, Xavier AV, LeGall J, Cabelli DE, Teixeira M (2002) Superoxide scavenging by neelaredoxin: dismutation and reduction activities in anaerobes. J Biol Inorg Chem 7:668–674CrossRefPubMedGoogle Scholar
  2. Adams MW, Jenney FE Jr, Clay MD, Johnson MK (2002) Superoxide reductase: fact or fiction? J Biol Inorg Chem 7:647–652CrossRefPubMedGoogle Scholar
  3. Asakawa S, Morii H, Akagawa-Matsushita M, Koga Y, Hayano K (1993) Characterization of Methanobrevibacter arboriphilicus SA isolated from a paddy field soil and DNA–DNA hybridization among M. arboriphilicus strains. Int J Syst Bacteriol 43:683–686Google Scholar
  4. Aufhammer S, Warkentin E, Berk H, Shima S, Thauer RK, Ermler U (2004) Coenzyme-binding in F420-dependent alcohol dehydrogenase, a member of the bacterial luciferase family. Structure 12:361–370CrossRefPubMedGoogle Scholar
  5. Baughn AD, Malamy MH (2004) The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 427:441–444CrossRefPubMedGoogle Scholar
  6. Baumer S, Ide T, Jacobi C, Johann A, Gottschalk G, Deppenmeier U (2000) The F420H2 dehydrogenase from Methanosarcina mazei is a Redox-driven proton pump closely related to NADH dehydrogenases. J Biol Chem 275:17968–17973CrossRefPubMedGoogle Scholar
  7. Baumgarten A, Redenius I, Kranczoch J, Cypionka H (2001) Periplasmic oxygen reduction by Desulfovibrio species. Arch Microbiol 176:306–309CrossRefPubMedGoogle Scholar
  8. Berk H, Thauer RK (1998) F420H2:NADP oxidoreductase from Methanobacterium thermoautotrophicum: Identification of the encoding gene via functional overexpression in Escherichia coli. FEBS Lett 438:124–126CrossRefPubMedGoogle Scholar
  9. Boone DR, Whitman WB, Rouvière P (1993) Diversity and taxonomy of methanogens. In: Ferry JG (ed) Methanogenesis. Chapman, New York, pp 35–80Google Scholar
  10. Brioukhanov A, Netrusov A, Sordel M, Thauer RK, Shima S (2000) Protection of Methanosarcina barkeri against oxidative stress: identification and characterization of an iron superoxide dismutase. Arch Microbiol 174:213–216CrossRefPubMedGoogle Scholar
  11. Briukhanov AL, Thauer RK, Netrusov AI (2002) Catalase and superoxide dismutase in the cells of strictly anaerobic microorganisms. Mikrobiologiia 71:330–335PubMedGoogle Scholar
  12. Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG et al (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073PubMedGoogle Scholar
  13. Carugo O, Argos P (1997a) NADP-dependent enzymes. I. Conserved stereochemistry of cofactor binding. Proteins 28:10–28CrossRefPubMedGoogle Scholar
  14. Carugo O, Argos P (1997b) NADP-dependent enzymes. II. Evolution of the mono- and dinucleotide binding domains. Proteins 28:29–40CrossRefPubMedGoogle Scholar
  15. Cheeseman P, Toms-Wood A, Wolfe RS (1972) Isolation and properties of a fluorescent compound, factor 420, from Methanobacterium strain M.o.H. J Bacteriol 112:527–531PubMedGoogle Scholar
  16. Chen L, Liu MY, LeGall J, Fareleira P, Santos H, Xavier AV (1993) Rubredoxin oxidase, a new flavo-hemo-protein, is the site of oxygen reduction to water by the “strict anaerobe” Desulfovibrio gigas. Biochem Biophys Res Commun 193:100–105CrossRefPubMedGoogle Scholar
  17. Coulter ED, Kurtz DM Jr (2001) A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase. Arch Biochem Biophys 394:76–86CrossRefPubMedGoogle Scholar
  18. Cypionka H (2000) Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol 54:827–848CrossRefPubMedGoogle Scholar
  19. Elias DA, Juck DF, Berry KA, Sparling R (2000) Purification of the NADP+:F420 oxidoreductase of Methanosphaera stadtmanae. Can J Microbiol 46:998–1003CrossRefPubMedGoogle Scholar
  20. Emerson JP, Coulter ED, Phillips RS, Kurtz DM Jr (2003) Kinetics of the superoxide reductase catalytic cycle. J Biol Chem 278:39662–39668CrossRefPubMedGoogle Scholar
  21. Fetzer S, Bak F, Conrad R (1993) Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation. FEMS Microbiol Ecol 12:107–115CrossRefGoogle Scholar
  22. Fish WW (1988) Rapid colorimetric micromethod for the quantitation of complexed iron in biological samples. In: Riordan JF, Vallee BL (eds) Methods enzymol. Academic, New York, pp 357–364Google Scholar
  23. Fournier M, Zhang Y, Wildschut JD, Dolla A, Voordouw JK, Schriemer DC et al. (2003) Function of oxygen resistance proteins in the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris hildenborough. J Bacteriol 185:71–79CrossRefPubMedGoogle Scholar
  24. Fox JA, Livingston DJ, Orme-Johnson WH, Walsh CT (1987) 8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum. 1. Purification and characterization. Biochemistry 26:4219–4227PubMedGoogle Scholar
  25. Frazao C, Silva G, Gomes CM, Matias P, Coelho R, Sieker L et al (2000) Structure of a dioxygen reduction enzyme from Desulfovibrio gigas. Nat Struct Biol 7:1041–1045CrossRefPubMedGoogle Scholar
  26. Fridovich I (1998) Oxygen toxicity: a radical explanation. J Exp Biol 201(Pt 8):1203–1209PubMedGoogle Scholar
  27. Gomes CM, Silva G, Oliveira S, LeGall J, Liu MY, Xavier AV et al. (1997) Studies on the redox centers of the terminal oxidase from Desulfovibrio gigas and evidence for its interaction with rubredoxin. J Biol Chem 272:22502–22508CrossRefPubMedGoogle Scholar
  28. Gomes CM, Vicente JB, Wasserfallen A, Teixeira M (2000) Spectroscopic studies and characterization of a novel electron-transfer chain from Escherichia coli involving a flavorubredoxin and its flavoprotein reductase partner. Biochemistry 39:16230–16237CrossRefPubMedGoogle Scholar
  29. Gomes CM, Giuffre A, Forte E, Vicente JB, Saraiva LM, Brunori M et al. (2002) A novel type of nitric-oxide reductase. Escherichia coli flavorubredoxin. J Biol Chem 277:25273–25276CrossRefPubMedGoogle Scholar
  30. Gorris LG, van der Drift C (1994) Cofactor contents of methanogenic bacteria reviewed. Biofactors 4:139–145PubMedGoogle Scholar
  31. Hagemeier CH, Shima S, Warkentin E, Thauer RK, Ermler U (2003) Coenzyme F420-dependent methylenetetrahydromethanopterin dehydrogenase from Methanopyrus kandleri: the selenomethionine-labelled and non-labelled enzyme crystallized in two different forms. Acta Crystallogr D Biol Crystallogr 59:1653–1655CrossRefPubMedGoogle Scholar
  32. Hausinger RP, Orme-Johnson WH, Walsh C (1985) Factor 390 chromophores: phosphodiester between AMP or GMP and methanogen factor 420. Biochemistry 24:1629–1633PubMedGoogle Scholar
  33. Herren CD, Rocha ER, Smith CJ (2003) Genetic analysis of an important oxidative stress locus in the anaerobe Bacteroides fragilis. Gene 316:167–175CrossRefPubMedGoogle Scholar
  34. Jin S, Kurtz DM, Jr., Liu ZJ, Rose J, Wang BC (2002) X-ray crystal structures of reduced rubrerythrin and its azide adduct: a structure-based mechanism for a non-heme diiron peroxidase. J Am Chem Soc 124:9845–9855CrossRefPubMedGoogle Scholar
  35. Jouanneau Y, Meyer C, Asso M, Guigliarelli B, Willison JC (2000) Characterization of a nif-regulated flavoprotein (FprA) from Rhodobacter capsulatus. Redox properties and molecular interaction with a [2Fe–2S] ferredoxin. Eur J Biochem 267:780–787CrossRefPubMedGoogle Scholar
  36. Jussofie A, Gottschalk G (1986) Further studies on the distribution of cytochromes in methanogenic bacteria. FEMS Microbiol Lett 37:15–18CrossRefGoogle Scholar
  37. Kengen SW, von den Hoff HW, Keltjens JT, van der Drift C, Vogels GD (1991) Hydrolysis and reduction of factor 390 by cell extracts of Methanobacterium thermoautotrophicum(strain ΔH). J Bacteriol 173:2283–2288PubMedGoogle Scholar
  38. Kiener A, Leisinger T (1983) Oxygen sensitivity of methanogenic bacteria. Syst Appl Microbiol 4:305–312Google Scholar
  39. Kirby TW, Lancaster JRJ, Fridovich I (1981) Isolation and characterization of the iron-containing superoxide dismutase of Methanobacterium bryantii. Arch Biochem Biophys 210:140–148PubMedGoogle Scholar
  40. Kiener A, Husain I, Sancar A, Walsh C (1989) Purification and properties of Methanobacterium thermoautotrophicum DNA photolyase. J Biol Chem 264:13880–13887PubMedGoogle Scholar
  41. Klein AR, Hartmann GC, Thauer RK (1995) Hydrogen isotope effects in the reactions catalyzed by H2-forming N 5,N 10-methylenetetrahydromethanopterin dehydrogenase from methanogenic Archaea. Eur J Biochem 233:372–376PubMedGoogle Scholar
  42. Klein AR, Berk H, Purwantini E, Daniels L, Thauer RK (1996) Si-face stereospecificity at C5 of coenzyme F420 for F420-dependent glucose-6-phosphate dehydrogenase from Mycobacterium smegmatis and F420-dependent alcohol dehydrogenase from Methanoculleus thermophilicus. Eur J Biochem 239:93–97CrossRefPubMedGoogle Scholar
  43. Komori H, Masui R, Kuramitsu S, Yokoyama S, Shibata T, Inoue Y et al. (2001) Crystal structure of thermostable DNA photolyase: pyrimidine-dimer recognition mechanism. Proc Natl Acad Sci USA 98:13560–13565CrossRefPubMedGoogle Scholar
  44. Kunow J, Schwörer B, Setzke E, Thauer RK (1993) Si-face stereospecificity at C5 of coenzyme F420 for F420-dependent N 5,N 10-methylenetetrahydromethanopterin dehydrogenase, F420-dependent N 5,N 10-methylenetetrahydromethanopterin reductase and F420H2: dimethylnaphthoquinone oxidoreductase. Eur J Biochem 214:641–646PubMedGoogle Scholar
  45. Kunow J, Schwörer B, Stetter KO, Thauer RK (1993) A F420-dependent NADP reductase in the extremely thermophilic sulfate reducing Archaeoglobus fulgidus. Arch Microbiol 160:199–205Google Scholar
  46. Kurtz DM Jr, Coulter ED (2002) The mechanism(s) of superoxide reduction by superoxide reductases in vitro and in vivo. J Biol Inorg Chem 7:653–658CrossRefPubMedGoogle Scholar
  47. Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631PubMedGoogle Scholar
  48. Leadbetter JR, Crosby LD, Breznak JA (1998) Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch Microbiol 169:287–292CrossRefPubMedGoogle Scholar
  49. Lyon EJ, Shima S, Buurman G, Chowdhuri S, Batschauer A, Steinbach K et al (2004) UV-A/blue-light inactivation of the ’metal-free’ hydrogenase (Hmd) from methanogenic archaea. Eur J Biochem 271:195–204PubMedGoogle Scholar
  50. McCready S, Marcello L (2003) Repair of UV damage in Halobacterium salinarum. Biochem Soc Trans 31:694–698CrossRefPubMedGoogle Scholar
  51. Michel R, Massanz C, Kostka S, Richter M, Fiebig K (1995) Biochemical characterization of the 8-hydroxy-5-deazaflavin-reactive hydrogenase from Methanosarcina barkeri Fusaro. Eur J Biochem 233:727–735PubMedGoogle Scholar
  52. Miller TL, Lin C (2002) Description of Methanobrevibacter gottschalkii sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and Methanobrevibacter wolinii sp. nov. Int J Syst Evol Microbiol 52:819–822CrossRefPubMedGoogle Scholar
  53. Nölling J, Ishii M, Koch J, Pihl TD, Reeve JN, Thauer RK et al. (1995) Characterization of a 45-kDa flavoprotein and evidence for a rubredoxin, two proteins that could participate in electron transport from H2 to CO2 in methanogenesis in Methanobacterium thermoautotrophicum. Eur J Biochem 231:628–638PubMedGoogle Scholar
  54. Nölling J, Pihl TD, Vriesema A, Reeve JN (1995) Organization and growth phase-dependent transcription of methane genes in two regions of the Methanobacterium thermoautotrophicum genome. J Bacteriol 177:2460–2468PubMedGoogle Scholar
  55. O’Connor KA, McBride MJ, West M, Yu H, Trinh L, Yuan K et al (1996) Photolyase of Myxococcus xanthus, a Gram-negative eubacterium, is more similar to photolyases found in Archaea and “higher” eukaryotes than to photolyases of other eubacteria. J Biol Chem 271:6252–6259CrossRefPubMedGoogle Scholar
  56. Roy R, Kluber HD, Conrad R (1997) Early initiation of methane production inaxic rice soil despite the presence of oxidants. FEMS Microbiol Ecol 24:311–320CrossRefGoogle Scholar
  57. Schauer NL, Ferry JG, Honek JF, Orme-Johnson WH, Walsh C (1986) Mechanistic studies of the coenzyme F420 reducing formate dehydrogenase from Methanobacterium formicicum. Biochemistry 25:7163–7168PubMedGoogle Scholar
  58. Schönheit P, Moll J, Thauer RK (1980) Growth parameters (K S, μ max, Y S) of Methanobacterium thermoautotrophicum. Arch Microbiol 127:59–65Google Scholar
  59. Schönheit P, Keweloh H, Thauer RK (1981) Factor F420 degradation in Methanobacterium thermoautotrophicum during exposure to oxygen. FEMS Microbiol Lett 12:347–349CrossRefGoogle Scholar
  60. Shima S, Netrusov A, Sordel M, Wicke M, Hartmann GC, Thauer RK (1999) Purification, characterization, and primary structure of a monofunctional catalase from Methanosarcina barkeri. Arch Microbiol 171:317–323CrossRefPubMedGoogle Scholar
  61. Shima S, Warkentin E, Grabarse W, Sordel M, Wicke M, Thauer RK et al (2000) Structure of coenzyme F-420 dependent methylenetetrahydromethanopterin reductase from two methanogenic archaea. J Mol Biol 300:935–950CrossRefPubMedGoogle Scholar
  62. Shima S, Sordel-Klippert M, Brioukhanov A, Netrusov A, Linder D, Thauer RK (2001) Characterization of a heme-dependent catalase from Methanobrevibacter arboriphilus. Appl Environ Microbiol 67:3041–3045CrossRefPubMedGoogle Scholar
  63. Silaghi-Dumitrescu R, Coulter ED, Das A, Ljungdahl LG, Jameson GN, Huynh BH et al. (2003) A flavodiiron protein and high molecular weight rubredoxin from Moorella thermoacetica with nitric oxide reductase activity. Biochemistry 42:2806–2815CrossRefPubMedGoogle Scholar
  64. Silva G, Oliveira S, LeGall J, Xavier AV, Rodrigues-Pousada C (2001) Analysis of the Desulfovibrio gigas transcriptional unit containing rubredoxin (rd) and rubredoxin-oxygen oxidoreductase (roo) genes and upstream ORFs. Biochem Biophys Res Commun 280:491–502CrossRefPubMedGoogle Scholar
  65. Smith DR, Doucette-Stamm LA, Deloughery C, Lee H, Dubois J, Aldredge T et al (1997) Complete genome sequence of Methanobacterium thermoautotrophicum ΔH: functional analysis and comparative genomics. J Bacteriol 179:7135–7155PubMedGoogle Scholar
  66. Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2:188–194CrossRefPubMedGoogle Scholar
  67. Takao M, Yasui A, Oikawa A (1991) Unique characteristics of superoxide dismutase of a strictly anaerobic archaebacterium Methanobacterium thermoautotrophicum. J Biol Chem 266:14151–14154PubMedGoogle Scholar
  68. Teshima T, Nakaji A, Shiba T, Tsai L, Yamazaki S (1985) Elucidation of stereospecificity of a selenium-containing hydrogenase from Methanococcus vannielii—syntheses of (R)- and (S)-[4-2H1]-3,4-dihydro-7-hydroxy-1-hydroxyethylquinolinone. Tetrahedron Lett 26:351–354CrossRefGoogle Scholar
  69. Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406PubMedGoogle Scholar
  70. Vermeij P, Detmers FJ, Broers FJ, Keltjens JT, Van der Drift C (1994) Purification and characterization of coenzyme F390 synthetase from Methanobacterium thermoautotrophicum (strain ΔH). Eur J Biochem 226:185–191PubMedGoogle Scholar
  71. Vermeij P, Vinke E, Keltjens JT, Van der Drift C (1995) Purification and properties of coenzyme F390 hydrolase from Methanobacterium thermoautotrophicum (strain Marburg). Eur J Biochem 234:592–597PubMedGoogle Scholar
  72. Vermeij P, van der Steen RJ, Keltjens JT, Vogels GD, Leisinger T (1996) Coenzyme F390 synthetase from Methanobacterium thermoautotrophicum Marburg belongs to the superfamily of adenylate-forming enzymes. J Bacteriol 178:505–510PubMedGoogle Scholar
  73. Vicente JB, Gomes CM, Wasserfallen A, Teixeira M (2002) Module fusion in an A-type flavoprotein from the cyanobacterium Synechocystis condenses a multiple-component pathway in a single polypeptide chain. Biochem Biophys Res Commun 294:82–87CrossRefPubMedGoogle Scholar
  74. Walsh C (1985) Naturally occurring 5-deazaflavin coenzymes: Biological redox roles. Acc Chem Res 19:216–221Google Scholar
  75. Warkentin E, Mamat B, Sordel-Klippert M, Wicke M, Thauer RK, Iwata M et al (2001) Structures of F420H2:NADP+ oxidoreductase with and without its substrates bound. EMBO J 20:6561–6569CrossRefPubMedGoogle Scholar
  76. Wasserfallen A, Huber K, Leisinger T (1995) Purification and structural characterization of a flavoprotein induced by iron limitation in Methanobacterium thermoautotrophicum Marburg. J Bacteriol 177:2436–2441PubMedGoogle Scholar
  77. Wasserfallen A, Ragettli S, Jouanneau Y, Leisinger T (1998) A family of flavoproteins in the domains Archaea and Bacteria. Eur J Biochem 254:325–332CrossRefPubMedGoogle Scholar
  78. Wolfe RS (1996) 1776-1996: Alessandro Volta’s combustible air. 220 years after Volta’s experiments, the microbial formation of methane approaches an understanding. ASM News 62:529–534Google Scholar
  79. Yamazaki S, Tsai L, Stadtman TC, Jacobson FS, Walsh C (1980) Stereochemical studies of 8-hydroxy-5-deazaflavin-dependent NADP+reductase from Methanococcus vannielii. J Biol Chem 255:9025–9027PubMedGoogle Scholar
  80. Yamazaki S, Tsai L, Stadtman TC (1982) Analogues of 8-hydroxy-5-deazaflavin cofactor: relative activity as substrates for 8-hydroxy-5-deazaflavin-dependent NADP+ reductase from Methanococcus vannielii. Biochemistry 21:934–939PubMedGoogle Scholar
  81. Yamazaki S, Tsai L, Stadtman TC, Teshima T, Nakaji A, Shiba T (1985) Stereochemical studies of a selenium-containing hydrogenase from Methanococcus vannielii: determination of the absolute configuration of C-5 chirally labeled dihydro-8-hydroxy-5-deazaflavin cofactor. Proc Natl Acad Sci USA 82:1364–1366PubMedGoogle Scholar
  82. Yasui A, Eker AP, Yasuhira S, Yajima H, Kobayashi T, Takao M et al (1994) A new class of DNA photolyases present in various organisms including aplacental mammals. EMBO J 13:6143–6151PubMedGoogle Scholar
  83. Zehnder AJB, Wuhrmann K (1977) Physiology of a Methanobacterium strain AZ. Arch Microbiol 111:199–205Google Scholar
  84. Zeikus JG, Henning DL (1975) Methanobacterium arbophilicum sp. nov. An obligate anaerobe isolated from wetwood of living trees. A v Leeuwenhoek 41:543–552Google Scholar
  85. Zhilina TN (1972) Death of Methanosarcina in the air. Mikrobiologiia 41:1105–1106PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Henning Seedorf
    • 1
  • Annette Dreisbach
    • 1
  • Reiner Hedderich
    • 1
  • Seigo Shima
    • 1
  • Rudolf K. Thauer
    • 1
    Email author
  1. 1.Max-Planck-Institut für terrestrische Mikrobiologie und Laboratorium für Mikrobiologie des Fachbereichs BiologiePhilipps-UniversitätMarburgGermany

Personalised recommendations