Archives of Microbiology

, Volume 181, Issue 4, pp 314–323 | Cite as

Bacillus amyloliquefaciens strains isolated from moisture-damaged buildings produced surfactin and a substance toxic to mammalian cells

  • Raimo MikkolaEmail author
  • Maria A. Andersson
  • Pavel Grigoriev
  • Vera V. Teplova
  • Nils-Erik L. Saris
  • Frederick A. Rainey
  • Mirja S. Salkinoja-Salonen
Original Paper


Fungicidic Bacillus amyloliquefaciens strains isolated from the indoor environment of moisture-damaged buildings contained heat-stable, methanol-soluble substances that inhibited motility of boar spermatozoa within 15 min of exposure and killed feline lung cells in high dilution in 1 day. Boar sperm cells lost motility, cellular ATP, and NADH upon contact to the bacterial extract (0.2 μg dry wt/ml). Two bioactive substances were purified from biomass of the fungicidal isolates. One partially characterized substance, 1,197 Da, was moderately hydrophobic and contained leucine, proline, serine, aspartic acid, glutamic acid and tyrosine, in addition to chromophore(s) absorbing at 365 nm. In boar sperm and human neural cells (Paju), the compound depolarized the transmembrane potentials of mitochondria (ΔΨ m) and the plasma membrane (ΔΨ p) after a 20-min exposure and formed cation-selective channels in lipid membranes, with a selectivity K+:Na+:Ca2+ of 26:15:3.5. The other substance was identified as a plasma-membrane-damaging lipopeptide surfactin. Plate-grown biomass of indoor Bacillus amyloliquefaciens contained ca. 7% of dry weight of the two substances, 1,197 Da and surfactin, in a ratio of 1:6 (w:w). The in vitro observed simultaneous collapse of both cytosolic and mitochondrial ATP in the affected mammalian cell, induced by the 1,197-Da cation channel, suggests potential health risks for occupants of buildings contaminated with such toxins.


Bacillus amyloliquefaciens Black lipid membrane Cation channel Ionophore Membrane-damage Mitochondria Moisture-damaged building Plasma membrane Surfactin Toxin 



Reversed-phase high-performance liquid chromatography


Black lipid membrane


Diode-array detector


Mitochondrial membrane potential


Plasma membrane potential


5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethylbenz-imidazolo carbocyanine iodide


Calcein acetoxymethyl ester


Propidium iodide


Matrix-assisted laser desorption ionization time-of-flight mass spectrometry


Electrospray ionization ion trap mass spectrometry


Endpoint concentration which caused ≥50% change in the viability parameters


Carbonyl cyanide 4-trifluoromethoxyphenylhydrazone



The study was supported by grants from Academy of Finland grant 50733, the grant for Center of Excellence “Microbial Resources,” Magnus Ehrnrooth Foundation and the Finnish Medical Society. We would like to thank Leif C. Andersson for collaboration, Anu Harju for growing Paju cells, the Viikki Science Library for excellent information services, Hannele Tukiainen, Leena Steininger and Tuula Suortti for many kinds of help.


  1. Adachi J, Asano M, Ueno Y (2000) Tetrahydro-beta-carboline-3-carboxylic acids and contaminants of l-tryptophan. J Chromatogr A 881:501–515CrossRefPubMedGoogle Scholar
  2. Aidley DJ, Stanfield PR (1996) Ion channels: molecules in action. Cambridge University Press, CambridgeGoogle Scholar
  3. Andersson MA, Laukkanen M, Nurmiaho-Lassila EL, Rainey FA, Niemelä S, Salkinoja-Salonen MS (1995) Bacillus thermosphaericus sp. nov. a new thermophilic ureolytic Bacillus isolated from air. Syst Appl Microbiol 18:203–220Google Scholar
  4. Andersson MA, Nikulin M, Koljalg U, Andersson MC, Rainey F, Reijula K, Hintikka EL, Salkinoja-Salonen M (1997) Bacteria, molds, and toxins in water-damaged building materials. Appl Environ Microbiol 2:387–393Google Scholar
  5. Andersson MA, Mikkola R, Kroppenstedt RM, Rainey FA, Peltola J, Helin J, Sivonen K, Salkinoja-Salonen MS (1998a) The mitochondrial toxin produced by Streptomyces griseus strains isolated from an indoor environment is valinomycin. Appl Environ Microbiol 12:4767–4773Google Scholar
  6. Andersson MA, Mikkola R, Helin J, Andersson MC, Salkinoja-Salonen M (1998b) A novel sensitive bioassay for detection of Bacillus cereus emetic toxin and related depsipeptide ionophores. Appl Environ Microbiol 4:1338–1343Google Scholar
  7. Andersson MA, Mikkola R, Apetroaie C, Hoornstra D, Nieminen T, Salkinoja-Salonen MS (2002) Fungicidic and mitochondriotoxic Bacilli frequent in water damaged buildings. In: Levin H (ed) Indoor Air 2002: Proceedings of the Ninth International Conference on Indoor Air Quality and Climate. Santa Cruz, CA, pp 33–39Google Scholar
  8. Andersson MA, Jääskeläinen EL, Shaheen R, Pirhonen T, Wijnands LM, Salkinoja-Salonen MS (2004) Sperm bioassay for rapid detection of cereulide producing Bacillus cereus in food and related environments. Int J Food (in press)Google Scholar
  9. Banin E, Khare SK, Naider F, Rosenberg E (2001) Proline-rich peptide from the coral pathogen Vibrio shiloi that inhibits photosynthesis of Zooxanthellae. Appl Environ Microbiol 67:1536–1541CrossRefPubMedGoogle Scholar
  10. Belongia EA, Gleich GJ (1996) The eosinophilia–myalgia syndrome revisited. J Rheumatol 23:1682–1685PubMedGoogle Scholar
  11. Beven L, Helluin O, Molle G, Duclohier H, Wroblewski H (1999) Correlation between anti-bacterial activity and pore sizes of two classes of voltage-dependent channel-forming peptides. Biochim Biophys Acta 1421:53–63PubMedGoogle Scholar
  12. Beynon RJ, Beaumont A (1998) Bacillolysin. In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes. Academic, London, pp 1047–1050Google Scholar
  13. Buckle AM, Schreiber G, Fersht AR (1994) Protein–protein recognition: crystal structural analysis of a barnase–barstar complex at 2.0-A resolution. Biochemistry 30:8878–8889Google Scholar
  14. Carpaneto A, Dalla Serra M, Menestrina G, Fogliano V, Gambale F (2002) The phytotoxic lipodepsipeptide syringopeptin 25A from Pseudomonas syringae pv syringae forms ion channels in sugar beet vacuoles. J Membr Biol 188:237–248CrossRefPubMedGoogle Scholar
  15. Chang R (1981) Physical chemistry. MacMillan Publishing Co., New York, pp 226–227Google Scholar
  16. Chowdhury B, Das SK, Bose SK (1998) Use of resistant mutants to characterize the target of mycobacillin in Aspergillus niger membranes. Microbiology 144:1123–1130PubMedGoogle Scholar
  17. Fogarty WM, Kelly CT (1990) Recent advances in microbial amylases. In: Fogarty WM, Kelly CT (eds) Microbial enzymes and biotechnology, 2nd edn. Elsevier Applied Science, London, pp 71–132Google Scholar
  18. Food and Drug Administration (1999) Code of Federal Regulations, title 21: food and drugs, chapter I: food and drug administration department of health and human services, part 184: direct food substances affirmed as generally recognized as safe. US Government Printing Office, Washington, DCGoogle Scholar
  19. Gilbert RJ, Humphrey TJ (1998) Food-borne bacterial gastroenteritis. In: Collier L, Balows A, Sussman M (eds) Microbiology and microbial infections, 9th edn. Arnold, London, pp 538–565Google Scholar
  20. Gould AR, May BK, Elliott WH (1971) Studies on the protoplast-bursting factor from Bacillus amyloliquefaciens. FEBS lett 14:320–322CrossRefPubMedGoogle Scholar
  21. Gräfe U (1992) Biochemie der Antibiotika: Structur-Biosynthese-Wirkmechanismus, Spectrum Akademischer Verlag GmbH, Heidelberg, pp 279–283Google Scholar
  22. Hiradate S, Yoshida S, Sugie H, Yada H, Fujii Y (2002) Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 6:693–698CrossRefGoogle Scholar
  23. Hoornstra D, Andersson MA, Mikkola R, Salkinoja-Salonen MS (2003) A new method for in vitro detection of microbially produced mitochondrial toxins. Toxicol In Vitro 17:745–751CrossRefPubMedGoogle Scholar
  24. Husman T (1996) Health effects of indoor air microorganisms. A review. Scand J Work Environ Health 22:5–13Google Scholar
  25. Huttunen K, Hyvärinen A, Nevalainen A, Komulainen H, Hirvonen MR (2003) Production of proinflammatory mediators by indoor air bacteria and fungal spores in mouse and human cell lines. Environ Health Perspect 111:85–92PubMedGoogle Scholar
  26. Juonala T, Lintukangas S, Nurttila T, Andersson M (1998) Relationship between semen quality and fertility in 106 A1-boars. Reprod Dom Anim 33:155–158Google Scholar
  27. Kilbourne EM, Philen RM, Kamb ML, Falk H (1996) Tryptophan produced by Showa Denko and epidemic eosinophilia–myalgia syndrome. J Rheumatol Suppl 46:81–91PubMedGoogle Scholar
  28. Klarskov K, Johnson KL, Benson LM, Cragun JD, Gleich GJ, Wrona M, Jiang XR, Dryhurst G, Naylor S (2003) Structural characterization of a case-implicated contaminant, “Peak X,” in commercial preparations of 5-hydroxytryptophan. J Rheumatol 30:89–95PubMedGoogle Scholar
  29. Laver DR (1994) The barrel-stave model as applied to alamethicin and its analogs reevaluated. Biophys J 66:355–359PubMedGoogle Scholar
  30. Maget-Dana R, Ptak M, Peypoux F, Michel G (1985) Pore-forming properties of iturin A, a lipopeptide antibiotic. Biochim Biophys Acta 3:405–409Google Scholar
  31. Marban E, Yamagishi T, Tomaselli GF (1998) Structure and function of voltage gated sodium channels. J Physiol 508:647–657PubMedGoogle Scholar
  32. Mayeno AN, Gleich GJ (1994) Eosinophilia–myalgia syndrome and tryptophan production: a cautionary tale. Trends Biotechnol 12:346–352PubMedGoogle Scholar
  33. Mikkola R, Saris NE, Grigoriev PA, Andersson MA, Salkinoja-Salonen MS (1999) Ionophoretic properties and mitochondrial effects of cereulide: the emetic toxin of B. cereus. Eur J Biochem 1:112–117CrossRefGoogle Scholar
  34. Mikkola R, Kolari M, Andersson MA, Helin J, Salkinoja-Salonen MS (2000) Toxic lactonic lipopeptide from food poisoning isolates of Bacillus licheniformis. Eur J Biochem 13:4068–4074Google Scholar
  35. Miller G (2003) The puzzling portrait of a pore. Science 300:2020–2022CrossRefPubMedGoogle Scholar
  36. Munimbazi C, Bullerman LB (1998) Isolation and partial characterization of antifungal metabolites of Bacillus pumilus. J Appl Microbiol 84:959–968CrossRefPubMedGoogle Scholar
  37. Nieminen AL, Saylor AK, Herman B, Lemasters JJ (1994) ATP depletion rather than mitochondrial depolarization mediates hepatocyte killing after metabolic inhibition. Am J Physiol 267:67–74Google Scholar
  38. Nikulin M, Lappalainen S, Pasanen AL, Laamanen I, Veijalainen P, Berg S, Hintikka EL (1996) Comparison of detection methods for trichothecenes produced by Fusarium sporotrichioides on fodder and grains at different air humidities. Nat Toxins 4:117–121PubMedGoogle Scholar
  39. Outtrup H, Jorgensen ST (2002) The importance of Bacillus species in the production of industrial enzymes. In: Berkeley R, Heyndrickx M, Logan N, De Vos P (eds) Applications and systematics of Bacillus and relatives. Blackwell publishing, UK, pp 206–218Google Scholar
  40. Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 5:553–563CrossRefGoogle Scholar
  41. Pieckova E, Jesenska Z, Wilkins K (1999) Microscopic fungi and their metabolites in dwellings—a bioassay study. In: Johanning E (ed) Bioaerosols, fungi and mycotoxins: health effects, assessment, prevention and control. Eastern New York Environmental Health Center, Albany, New York, USA, pp 351–354Google Scholar
  42. Pirttijärvi TS, Graeffe TH, Salkinoja-Salonen MS (1996) Bacterial contaminants in liquid packaging boards: assessment of potential for food spoilage. J Appl Bacteriol 4:445–458Google Scholar
  43. Pirttijärvi TS, Andersson MA, Scoging AC, Salkinoja-Salonen MS (1999) Evaluation of methods for recognising strains of the Bacillus cereus group with food poisoning potential among industrial and environmental contaminants. Syst Appl Microbiol 1:133–144Google Scholar
  44. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E (1996) The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 4:1088–1092Google Scholar
  45. Salkinoja-Salonen MS, Vuorio R, Andersson MA, Kämpfer P, Andersson MC, Honkanen-Buzalski T, Scoging AC (1999a) Toxigenic strains of Bacillus licheniformis related to food poisoning. Appl Environ Microbiol 10:4637–4645Google Scholar
  46. Salkinoja-Salonen MS, Andersson MA, Mikkola R, Paananen A, Peltola J, Mussalo-Rauhanmaa H, Vuorio R, Saris NE, Grigorjev P, Helin J, Koljalg U, Timonen T (1999b) Toxigenic microbes in indoor environment: identification, structure and biological effects of the aerosolizing toxins. In: Johanning E (ed) Bioaerosols, fungi and mycotoxins: health effects, assessment, prevention and control. Eastern New York Occupational and Environmental Health Center, Albany, New York, pp 359–374Google Scholar
  47. Shin SY, Lee SH, Yang ST, Park EJ, Lee DG, Lee MK, Eom SH, Song WK, Kim Y, Hahm KS, Kim JI (2001) Antibacterial, antitumor and hemolytic activities of alpha-helical antibiotic peptide, P18 and its analogs. J Pept Res 58:504–514CrossRefPubMedGoogle Scholar
  48. Simat T, van Wickern B, Eulitz K, Steinhart EH (1996) Contaminants in biotechnologically manufactured l-tryptophan. J Chromatogr B Biomed Appl 685:41–51CrossRefPubMedGoogle Scholar
  49. Simat TJ, Kleeberg KK, Muller B, Sierts A (1999) Synthesis, formation, and occurrence of contaminants in biotechnologically manufactured l-tryptophan. Adv Exp Med Biol 467:469–480PubMedGoogle Scholar
  50. Starke I, Kleinpeter E, Kamm B (2001) Separation, identification, and quantification of amino acids in l-lysine fermentation potato juices by gas chromatography–mass spectrometry. Fresenius J Anal Chem 371:380–384CrossRefPubMedGoogle Scholar
  51. Suh JY, Lee YT, Park CB, Lee KH, Kim SC, Choi BS (1999) Structural and functional implications of a proline residue in the antimicrobial peptide gaegurin. Eur J Biochem 266:665–674CrossRefPubMedGoogle Scholar
  52. Suominen I, Andersson MA, Andersson MC, Hallaksela AM, Kampfer P, Rainey FA, Salkinoja-Salonen M (2001) Toxic Bacillus pumilus from indoor air, recycled paper pulp, Norway spruce, food poisoning outbreaks and clinical samples. Syst Appl Microbiol 2:267–276Google Scholar
  53. Thorne PS (1993) Sump additives as a source of bioaerosols in a school building. Vet Hum Toxicol 35:141–143PubMedGoogle Scholar
  54. Tsien RW (1988) Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 11:431–438PubMedGoogle Scholar
  55. Winfried E, Jewgenij M, Hoeding B, Krebs B, Bendzko P, Ockhardt A (1998) Cyclic peptide(s) from B. amyloliquefaciens. Patent DE19641213Google Scholar
  56. Yoshida S, Hiradate S, Tsukamoto T, Hatakeda K, Shirata A (2001) Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91:181–187Google Scholar
  57. Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 7:955–963CrossRefGoogle Scholar
  58. Zhang KZ, Westberg JA, Holtta E, Andersson LC (1996) BCL2 regulates neural differentiation. Proc Natl Acad Sci USA 93:4504–4509CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Raimo Mikkola
    • 1
    Email author
  • Maria A. Andersson
    • 1
  • Pavel Grigoriev
    • 1
    • 2
  • Vera V. Teplova
    • 1
    • 3
  • Nils-Erik L. Saris
    • 1
  • Frederick A. Rainey
    • 4
  • Mirja S. Salkinoja-Salonen
    • 1
  1. 1.Department of Applied Chemistry and MicrobiologyUniversity of HelsinkiHelsinkiFinland
  2. 2.Institute of Cell BiophysicsRussian Academy of SciencesMoscow RegionRussia
  3. 3.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesMoscow RegionRussia
  4. 4.Department of Biological SciencesLouisiana State UniversityBaton RougeUSA

Personalised recommendations