Advertisement

Archives of Microbiology

, Volume 181, Issue 4, pp 299–304 | Cite as

Candidatus Hepatincola porcellionum’ gen. nov., sp. nov., a new, stalk-forming lineage of Rickettsiales colonizing the midgut glands of a terrestrial isopod

  • Yongjie Wang
  • Ulrich Stingl
  • Friederike Anton-Erxleben
  • Martin Zimmer
  • Andreas BruneEmail author
Original Paper

Abstract

The midgut glands (hepatopancreas) of terrestrial isopods are densely colonized by hitherto uncultivated bacteria. In the case of the Common Woodlouse, Porcellio scaber (Crustacea: Isopoda), the symbionts represent a novel lineage in the α-subdivision of Proteobacteria. Based on comparative sequence analysis of their 16S rRNA genes, their closest (albeit distant) relatives were among the Rickettsiales, which are intracellular symbionts or pathogens of many animals. Transmission electron microscopy and in situ hybridization with fluorescently labeled oligonucleotide probes revealed a homogeneous population of symbionts intimately associated with the endothelium of the hepatopancreas, which apparently interact with the microvilli of the brush border by means of a stalk-like cytoplasmic appendage. Based on isolated phylogenetic position and unique cytological properties, the provisional name ‘Candidatus Hepatincola porcellionum’ is proposed to classify this new taxon of Rickettsiales colonizing the hepatopancreas of P. scaber.

Keywords

Crustacea Isopoda Hepatopancreas Symbionts α-Proteobacteria Rickettsiales Prosthecate bacteria 

Notes

Acknowledgments

Y.W. and U.S. were supported by grants of the Deutsche Forschungsgemeinschaft to M.Z. and A.B., respectively. We thank Antje Thomas for technical assistance and Hans G. Trüper for etymological advice.

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedGoogle Scholar
  2. Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770PubMedGoogle Scholar
  3. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedGoogle Scholar
  4. Bouchon D, Rigaud T, Juchault P (1998) Evidence for widespread Wolbachia infection in isopod crustaceans: molecular identification and host feminization. Proc R Soc Lond B Biol Sci 265:1081–1090CrossRefPubMedGoogle Scholar
  5. Breznak JA (2000) Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbiosis, ecology. Kluwer, Dordrecht, pp 209–231Google Scholar
  6. Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487Google Scholar
  7. Brune A, Friedrich M (2000) Microecology of the termite gut: structure and function on a microscale. Curr Opin Microbiol 3:263–269Google Scholar
  8. Cordaux, R., Michel-Salzat, A. & Bouchon, D (2001) Wolbachia infection in crustaceans: novel hosts and potential routes for horizontal transmission. J Evol Biol 14:237–243CrossRefGoogle Scholar
  9. Donadey C, Besse G (1972) Étude histologique, ultrastructurale et expérimentale des caecums digestifs de Porcellio dilatatus et Ligia oceanica (Crustacea, Isopoda). Tethys 4:145–162Google Scholar
  10. Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37Google Scholar
  11. Drobne D, Strus J, Znidarsic N, Zidar P (1999) Morphological description of bacterial infection of digestive glands in the terrestrial isopod Porcellio scaber (Isopoda, Crustacea). J Invert Pathol 73:113–119CrossRefGoogle Scholar
  12. Dubilier N, Giere O, Distel DL, Cavanaugh CM (1995) Characterization of chemoautotrophic bacterial symbionts in a gutless marine worm (Oligochaeta, Annelida) by phylogenetic 16S rRNA sequence analysis and in situ hybridization. Appl Environ Microbiol 61:2346–2350PubMedGoogle Scholar
  13. Fredricks DN (2001) Introduction to the Rickettsiales and other intracellular prokaryotes. In: Dworkin M et al. (eds.) The prokaryotes: An evolving electronic resource for the microbiological community. 3rd edn, release 3.6, Springer, New York, http://www.springerlink.com/link.asp?id=300418
  14. Friedrich MW, Schmitt-Wagner D, Lueders T, Brune A (2001) Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus. Appl Environ Microbiol 67:4880–4890Google Scholar
  15. Goebel W, Gross R (2001) Intracellular survival strategies of mutualistic and parasitic prokaryotes. Trends Microbiol 9:267–273PubMedGoogle Scholar
  16. Hames CAC, Hopkin SP (1989) The structure and function of the digestive system of terrestrial isopods. J Zool Lond 217:599–627Google Scholar
  17. Hassall M, Jennings JB (1975) Adaptive features of gut structure and digestive physiology in the terrestrial isopod Philoscia muscorum (Scopoli) 1763. Biol Bull 149:348–364PubMedGoogle Scholar
  18. Henckel T, Friedrich M, Conrad R (1999) Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl Environ Microbiol 65:1980–1990PubMedGoogle Scholar
  19. Hopkin SP, Martin MH (1982) The distribution of zinc, cadmium, lead and copper within the hepatopancreas of a woodlouse. Tissue Cell 14:703–715PubMedGoogle Scholar
  20. Klaasen HLBM, Koopman JP, Poelma FGJ, Beynen AC (1992) Intestinal, segmented, filamentous bacteria. FEMS Microbiol Rev 88:165–180CrossRefGoogle Scholar
  21. Kostanjsek R, Strus J, Drobne D, Avgustin G (2003) ‘Candidatus Rhabdochlamydia porcellionis’ gen. nov., sp. nov., an intracellular bacterium from hepatopancreatic cells of the terrestrial isopod Porcellio scaber (Crustacea: Isopoda). Int J Syst Evol Microbiol,  DOI 10.1099/ijs.0.02802-0
  22. Lu L, Walker WA (2001) Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium. Am J Clin Nutr 73(S):1124–1130Google Scholar
  23. Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. System Appl Microbiol 15:593–600Google Scholar
  24. McFall-Ngai MJ (1999) Consequences of evolving with bacterial symbionts: insights from the squid-vibrio associations. Annu Rev Ecol Syst 30:235–256Google Scholar
  25. Moran NA, Baumann P (2000) Bacterial endosymbionts in animals. Curr Opin Microbiol 3:270–275CrossRefPubMedGoogle Scholar
  26. Poindexter JS (1992) Dimorphic Prosthecate Bacteria: The Genera Caulobacter, Asticcacaulis, Hyphomicrobium, Pedomicrobium, Hyphomonas, and Thiodendron. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds.), The prokaryotes, 2nd edn. Springer, New York, pp 2176–2196Google Scholar
  27. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212Google Scholar
  28. Sansonetti P (2002) Host-pathogen interactions: the seduction of molecular cross talk. Gut 50(S3):2–8Google Scholar
  29. Stackebrandt E, Fredriksen W, Garrity GM, Grimont PAD, Kämpfer P, Maiden MCJ, Nesme X, Roselló-Mora R, Swings J, Trüper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047CrossRefPubMedGoogle Scholar
  30. Stouthamer R, Breeuwer JAJ, Hurst GDD (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53:71–102PubMedGoogle Scholar
  31. Wagner M, Amann R, Lemmer H, Schleifer KH (1993) Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol 59:1520–1525PubMedGoogle Scholar
  32. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697–703Google Scholar
  33. Wood S, Griffiths BS (1988) Bacteria associated with the hepatopancreas of the woodlice Oniscus asellus and Porcellio scaber (Crustacea, Isopoda). Pedobiologia 31:89–94Google Scholar
  34. Zimmer M (1999) The fate and effects of ingested hydrolysable tannins in Porcellio scaber. J Chem Ecol 25:611–628Google Scholar
  35. Zimmer M, Topp W (1998a) Microorganisms and cellulose digestion in the gut of Porcellio scaber (Isopoda: Oniscidea). J Chem Ecol 24:1397–1408Google Scholar
  36. Zimmer M, Topp W (1998b) Nutritional biology of terrestrial isopods (Isopoda: Oniscidea): Copper revisited. Israel J Zool 44:453–462Google Scholar
  37. Zimmer M, Danko JP, Pennings SC, Danford AR, Ziegler A, Uglow RF, Carefoot TH (2001) Hepatopancreatic endosymbionts in coastal isopods (Crustacea: Isopoda), and their contribution to digestion. Mar Biol 138:955–963CrossRefGoogle Scholar
  38. Zimmer M, Danko JP, Pennings SC, Danford AR, Ziegler A, Carefoot TH, Uglow RF (2002) Cellulose digestion and phenol oxidation in coastal isopods (Crustacea: Isopoda). Mar Biol 140:1207–1213CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Yongjie Wang
    • 1
  • Ulrich Stingl
    • 2
  • Friederike Anton-Erxleben
    • 1
  • Martin Zimmer
    • 1
  • Andreas Brune
    • 2
    • 3
    Email author
  1. 1.Zoologisches InstitutChristian-Albrechts-UniversitätKielGermany
  2. 2.LS Mikrobielle ÖkologieUniversität KonstanzKonstanzGermany
  3. 3.Department of BiogeochemistryMax Planck Institute for Terrestrial MicrobiologyMarburgGermany

Personalised recommendations