Archives of Microbiology

, Volume 181, Issue 4, pp 269–277 | Cite as

Thermobaculum terrenum gen. nov., sp. nov.: a non-phototrophic gram-positive thermophile representing an environmental clone group related to the Chloroflexi (green non-sulfur bacteria) and Thermomicrobia

  • Lina M. Botero
  • Kathy B. Brown
  • Sue Brumefield
  • Mark Burr
  • Richard W. Castenholz
  • Mark Young
  • Timothy R. McDermott
Original Paper

Abstract

A novel bacterium was cultivated from an extreme thermal soil in Yellowstone National Park, Wyoming, USA, that at the time of sampling had a pH of 3.9 and a temperature range of 65–92 °C. This organism was found to be an obligate aerobic, non-spore-forming rod, and formed pink-colored colonies. Phylogenetic analysis of the 16S rRNA gene sequence placed this organism in a clade composed entirely of environmental clones most closely related to the phyla Chloroflexi and Thermomicrobia. This bacterium stained gram-positive, contained a novel fatty-acid profile, had cell wall muramic acid content similar to that of Bacillus subtilis (significantly greater than Escherichia coli), and failed to display a lipopolysaccharide profile in SDS-polyacrylamide gels that would be indicative of a gram-negative cell wall structure. Ultrastructure examinations with transmission electron microscopy showed a thick cell wall (approximately 34 nm wide) external to a cytoplasmic membrane. The organism was not motile under the culture conditions used, and electron microscopic examination showed no evidence of flagella. Genomic G+C content was 56.4 mol%, and growth was optimal at 67 °C and at a pH of 7.0. This organism was able to grow heterotrophically on various carbon compounds, would use only oxygen as an electron acceptor, and its growth was not affected by light. A new species of a novel genus is proposed, with YNP1T (T=type strain) being Thermobaculum terrenum gen. nov., sp. nov. (16S rDNA gene GenBank accession AF391972). This bacterium has been deposited in the American Type Culture Collection (ATCC BAA-798) and the University of Oregon Culture Collection of Microorganisms from Extreme Environments (CCMEE 7001).

Keywords

Thermophile Green non-sulfur Chloroflexi Gram-positive Yellowstone National Park Thermal soil 

Notes

Acknowledgements

The authors express gratitude for the enthusiastic help from Anne Deutch, Christie Hendrix, and John Varley, Yellowstone Center for Resources, Yellowstone National Park, Wyoming. The authors thank Bill Franck for help in temperature experiments, and in particular gratefully acknowledge Dr. Hans G. Trüper for assistance with nomenclature and Dr. Marci McClure for helpful discussion regarding in-depth sequence analysis. Funding to support this work was from the National Science Foundation (DEB-9809360) and the National Aeronautics and Space Administration (NAG5-8807).

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 25:3389–3402PubMedGoogle Scholar
  2. Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143-169PubMedGoogle Scholar
  3. Britton G (1985). General carotenoid methods. In: Law JH, Rillings HC (eds) Methods in enzymology, steroids and isoprenoids. Part B. Academic, Orlando, Florida, 111:113–149Google Scholar
  4. Castenholz RW (2001) Class I. “Chloroflexi” In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 1. Springer, Berlin, Heidelberg New York, pp 427Google Scholar
  5. Chandler DP, Brockman FJ, Bailey TJ, Fredrickson JK (1998) Phylogenetic diversity of archaea and bacteria in a deep subsurface paleosol. Microb Ecol 36:37–50PubMedGoogle Scholar
  6. De Jonge BLM, Chang Y-S, Gage D, Tomasz A (1992) Peptidoglycan composition of a highly methicillin-resistant Staphylococcus aureus strain. J Biol Chem 267:11248–11254PubMedGoogle Scholar
  7. Dojka, M.A., Hugenholtz P, Haack SK, Pace NR (1998) Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64:3869–3877PubMedGoogle Scholar
  8. Ferris MJ, Muyzer G, Ward DM (1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62:340–346PubMedGoogle Scholar
  9. Fliermans CB, Brock, TD (1972). Ecology of sulfur-oxidizing bacteria in hot acid soils. J. Bacteriol. 111:343–350Google Scholar
  10. Garrity GM, Holt JG (2001) Phylum BVI. Chloroflexi phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 1. Springer, Berlin, Heidelberg New York, pp 427Google Scholar
  11. Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62:1435–1491PubMedGoogle Scholar
  12. Hadzija O (1974) A simple method for the quantitative determination of muramic acid. Anal Biochem 60:512–517PubMedGoogle Scholar
  13. Holt JG, Castenholz RW (2001) Family I. Herpetosiphonaceae, Genus I. Herpetosiphon Holt and Lewin 968, 2408AL. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 1. Springer, Berlin, Heidelberg New York, pp 445–446Google Scholar
  14. Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring J Bacteriol 180:366–376Google Scholar
  15. Jackson TJ, Ramaley RF, Meinschein WG (1973) Thermomicrobium, a new genus of extremely thermophilic bacteria. Int J Syst Bacteriol 23:28–36Google Scholar
  16. Jackson CR, Langner HW, Donahoe-Christiansen J, Inskeep WP, McDermott TR (2001) Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ Micro 3:532–542CrossRefGoogle Scholar
  17. Mazel D, Guglielmi G, Houmard S, Sidler W, Bryant DA, de Marsac NT (1986) Green light induces transcription of the phycoerythrin operon in the cyanobacterium Calothrix 7601. Nucleic Acids Res 14:8279–8290PubMedGoogle Scholar
  18. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167Google Scholar
  19. Nelson DC (1989) Physiology and biochemistry of filamentous sulfur bacteria. In Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech, Madison Wisconsin, pp 219–238.Google Scholar
  20. Norris TB, Wraith JM, Castenholz RW, McDermott TR (2002) Soil microbial community structure across a thermal gradient following a geothermal heating event. Appl Environ Microbiol 68:6300–6309CrossRefPubMedGoogle Scholar
  21. Oyaizu H, Debrunner-Vossbrinck B, Mandelco L, Studier JA, Woese CR (1987) The green non-sulfur bacteria: a deep branching in the eubacterial line of descent. System Appl Microbiol 9:47–53Google Scholar
  22. Page AL, Miller RH, Keeney DR (1982) Methods of soil analysis, 2nd edn. Soil Science Society of America, Madison, WisonsinGoogle Scholar
  23. Perry JJ (2001) Genus I. Thermomicrobium Jackson, Ramaley and Meinschein 1973, 34AL In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 1. Springer, Berlin, Heidelberg New York, pp 448–450Google Scholar
  24. Pfennig N, Trüper HG (1992) The Family Chromatiaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. A Handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, vol. 4. Springer, Berlin Heidelberg New York pp 3320–3221Google Scholar
  25. Pierson BK (2001) Family I. Chloroflexaceae. Filamentous anoxygenic phototrophic bacteria. In: Boone DR Castenholz RW (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 1. Springer, Berlin Heidelberg New York, pp 427–429Google Scholar
  26. Pierson BK, Castenholz RW (1974a) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24PubMedGoogle Scholar
  27. Pierson BK, Castenholz RW (1974b) Studies of pigments and growth in Chloroflexus aurantiacus, a phototrophic filamentous bacterium. Arch Microbiol 100:283–305Google Scholar
  28. Pierson BK, Castenholz RW (2001) Genus I. Chloroflexus Pierson and Castenholz 1974a, 7AL In: Boone DR Castenholz RW (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 1. Springer, Berlin Heidelberg New York. pp 429–437Google Scholar
  29. Reynolds ES (1963) The use of lead citrate at high pH as electron opaque stain in electron microscopy. J Cell Biol 17:298–342Google Scholar
  30. Sambrook J, Frisch, EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  31. Smibert RM, Krieg NR (1994) Phenotypic characterization, In Gerhardt P, Murry RGE, Wood WA, Krieg (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 607–654.Google Scholar
  32. Somerville JE, Kahn ML (1983) Cloning of the glutamine synthetase I gene from Rhizobium meliloti. J Bacteriol 156:168–176PubMedGoogle Scholar
  33. Sparks DL, Page AL, Helmke PA, Loeppert RH (1996) Methods of soil analysis. Part 3. Soil Science Society of America, Madison, WisconsinGoogle Scholar
  34. Sprott GD, Koval SF, Schnaitman CA (1994) Cell fractionation, In Gerhardt P, Murry RGE, Wood WA, Krieg (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC pp 72–109Google Scholar
  35. Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastr Res 26:31–43Google Scholar
  36. Summers ML, Botero LM, Busse SC, McDermott TR (2000) The Sinorhizobium meliloti Lon protease is involved in regulating exopolysaccharide synthesis and is required for nodulation of alfalfa. J Bacteriol 182:2551–2558.CrossRefPubMedGoogle Scholar
  37. Teske A, Hinrichs K-U, Edgcomb V, de Vera Gomez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007Google Scholar
  38. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedGoogle Scholar
  39. von Wintzingerode F, Selent B, Hegemann W, Gobel UB (1999) Phylogenetic analysis of an anaerobic, trichlorobenzene-transforming microbial consortium Appl Environ Microbiol 65:283–286Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Lina M. Botero
    • 1
  • Kathy B. Brown
    • 1
    • 2
  • Sue Brumefield
    • 1
  • Mark Burr
    • 1
  • Richard W. Castenholz
    • 3
    • 4
  • Mark Young
    • 1
  • Timothy R. McDermott
    • 1
  1. 1.Thermal Biology InstituteMontana State UniversityBozemanUSA
  2. 2.Sierra High SchoolMantecaUSA
  3. 3.Center for Ecology and Evolutionary BiologyUniversity of OregonEugeneUSA
  4. 4.NASA Aimes Research CenterNASA Astrobiology InstituteMoffett FieldUSA

Personalised recommendations