Archives of Microbiology

, Volume 181, Issue 3, pp 215–230

Mass spectrometry proteomic analysis of stress adaptation reveals both common and distinct response pathways in Propionibacterium freudenreichii

  • Pauline Leverrier
  • Johannes P. C. Vissers
  • Annette Rouault
  • Patrick Boyaval
  • Gwénaël Jan
Original Paper

Abstract

Microorganisms used in food technology and probiotics are exposed to technological and digestive stresses, respectively. Traditionally used as Swiss-type cheese starters, propionibacteria also constitute promising human probiotics. Stress tolerance and cross-protection in Propionibacterium freudenreichii were thus examined after exposure to heat, acid, or bile salts stresses. Adapted cells demonstrated acquired homologous tolerance. Cross-protection between bile salts and heat adaptation was demonstrated. By contrast, bile salts pretreatment sensitized cells to acid challenge and vice versa. Surprisingly, heat and acid responses did not present significant cross-protection in P. freudenreichii. During adaptations, important changes in cellular protein synthesis were observed using two-dimensional electrophoresis. While global protein synthesis decreased, several proteins were overexpressed during stress adaptations. Thirty-four proteins were induced by acid pretreatment, 34 by bile salts pretreatment, and 26 by heat pretreatment. Six proteins are common to all stresses and represent general stress-response components. Among these polypeptides, general stress chaperones, and proteins involved in energetic metabolism, oxidative stress response, or SOS response were identified. These results bring new insight into the tolerance of P. freudenreichii to heat, acid, and bile salts, and should be taken into consideration in the development of probiotic preparations.

Keywords

Propionibacterium Probiotic Stress Acid Bile salts Cross-protection Proteomics Quadrupole/time-of-flight mass spectrometry Nanoscale LC-MS/MS De novo sequencing 

References

  1. Antelmann H, Bernhardt J, Schmid R, Mach H, Volker U, Hecker M (1997) First steps from a two-dimensional protein index towards a response-regulation map for Bacillus subtilis. Electrophoresis 18:1451–1463PubMedGoogle Scholar
  2. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147PubMedGoogle Scholar
  3. Bernstein C, Bernstein H, Payne CM, Beard SE, Schneider J (1999) Bile salt activation of stress response promoters in Escherichia coli. Curr Microbiol 39:68–72CrossRefPubMedGoogle Scholar
  4. Bougle D, Roland N, Lebeurrier F, Arhan P (1999) Effect of propionibacteria supplementation on fecal bifidobacteria and segmental colonic transit time in healthy human subjects. Scand J Gastroenterol 34:144–148CrossRefPubMedGoogle Scholar
  5. Breton YL, Maze A, Hartke A, Lemarinier S, Auffray Y, Rince A (2002) Isolation and characterization of bile salts-sensitive mutants of Enterococcus faecalis. Curr Microbiol 45:434–439PubMedGoogle Scholar
  6. Caldas TD, El Yaagoubi A, Richarme G (1998) Chaperone properties of bacterial elongation factor EF-Tu. J Biol Chem 273:11478–11482PubMedGoogle Scholar
  7. Chou LS, Weimer B (1999) Isolation and characterization of acid- and bile-tolerant isolates from strains of Lactobacillus acidophilus. J Dairy Sci 82:23–31PubMedGoogle Scholar
  8. Davis MJ, Coote PJ, O’Byrne CP (1996) Acid tolerance in Listeria monocytogenes: the adaptive acid tolerance response (ATR) and growth-phase-dependent acid resistance. Microbiology 142:2975–2982PubMedGoogle Scholar
  9. Duche O, Tremoulet F, Glaser P, Labadie J (2002) Salt Stress Proteins Induced in Listeria monocytogenes. Appl Environ Microbiol 68:1491–1498CrossRefPubMedGoogle Scholar
  10. Duwat P (1999) Stress response pathways in Lactococcus lactis. Recent Res Devel Microbiology 3:335–348Google Scholar
  11. Flahaut S, Frere J, Boutibonnes P, Auffray Y (1996a) Comparison of the bile salts and sodium dodecyl sulfate stress responses in Enterococcus faecalis. Appl Environ Microbiol 62:2416–2420PubMedGoogle Scholar
  12. Flahaut S, Hartke A, Giard JC, Benachour A, Boutibonnes P, Auffray Y (1996b) Relationship between stress response toward bile salts, acid and heat treatment in Enterococcus faecalis. FEMS Microbiol Lett 138:49–54CrossRefPubMedGoogle Scholar
  13. Flahaut S, Frere J, Boutibonnes P, Auffray Y (1997) Relationship between the thermotolerance and the increase of DnaK and GroEL synthesis in Enterococcus faecalis ATCC19433. J Basic Microbiol 37:251–258PubMedGoogle Scholar
  14. Foster JW (1993) The acid tolerance response of Salmonella typhimurium involves transient synthesis of key acid shock proteins. J Bacteriol 175:1981–1987PubMedGoogle Scholar
  15. Franklyn KM, Warmington JR (1994) The expression of Candida albicans enolase is not heat shock inducible. FEMS Microbiol Lett 118:219–225CrossRefPubMedGoogle Scholar
  16. Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378Google Scholar
  17. Goldin BR and Gorbach SL (1992) Probiotics for humans. In: Fuller, R. (ed) Probiotics, the scientific basis. Chapman & Hall, London, pp 355–376Google Scholar
  18. Gouesbet G, Jan G, Boyaval P (2002) Two-dimensional electrophoresis study of Lactobacillus delbrueckii subsp. bulgaricus thermotolerance. Appl Environ Microbiol 68:1055–1063CrossRefPubMedGoogle Scholar
  19. Graumann P, Schroder K, Schmid R, Marahiel MA (1996) Cold shock stress-induced proteins in Bacillus subtilis. J Bacteriol 178:4611–4619PubMedGoogle Scholar
  20. Hartke A, Bouché S, Giard JC, Benachour A, Boutibonnes P, Auffray Y (1996) The lactic acid stress response of Lactococcus lactis subsp. lactis. Curr Microbiol 33:194–199CrossRefPubMedGoogle Scholar
  21. Hecker M, Schumann W, Volker U (1996) Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol 19:417–428PubMedGoogle Scholar
  22. Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A 90:5011–5015PubMedGoogle Scholar
  23. Hermann T, Pfefferle W, Baumann C, Busker E, Schaffer S, Bott M, Sahm H, Dusch N, Kalinowski J, Puhler A, Bendt AK, Kramer R, Burkovski A (2001) Proteome analysis of Corynebacterium glutamicum. Electrophoresis 22:1712–1723CrossRefPubMedGoogle Scholar
  24. Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531CrossRefPubMedGoogle Scholar
  25. Jacobsen CN, Rosenfeldt N, V, Hayford AE, Moller PL, Michaelsen KF, Paerregaard A, Sandstrom B, Tvede M, Jakobsen M (1999) Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol 65:4949–4956PubMedGoogle Scholar
  26. Jan G, Leverrier P, Roland N (2001a) Survival and beneficial effects of propionibacteria in the human gut: in vivo and in vitro investigations. Lait 82:131–144CrossRefGoogle Scholar
  27. Jan G, Leverrier P, Pichereau V, Boyaval P (2001b) Changes in protein synthesis and morphology during acid adaptation of Propionibacterium freudenreichii. Appl Environ Microbiol 67:2029–2036CrossRefPubMedGoogle Scholar
  28. Jan G, Belzacq AS, Haouzi D, Rouault A, Metivier D, Kroemer G, Brenner C (2002) Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ 9:179–188CrossRefPubMedGoogle Scholar
  29. Jungblut PR, Bumann D, Haas G, Zimny-Arndt U, Holland P, Lamer S, Siejak F, Aebischer A, Meyer TF (2000) Comparative proteome analysis of Helicobacter pylori. Mol Microbiol 36:710–725CrossRefPubMedGoogle Scholar
  30. Laport MS, de Castro AC, Villardo A, Lemos JA, Bastos MC, Giambiagi-deMarval M (2001) Expression of the major heat shock proteins DnaK and GroEL in Streptococcus pyogenes: a comparison to Enterococcus faecalis and Staphylococcus aureus. Curr Microbiol 42:264–268PubMedGoogle Scholar
  31. Leverrier P, Dimova D, Pichereau V, Auffray Y, Boyaval P, Jan G (2003) Susceptibility and adaptive response to bile salts in Propionibacterium freudenreichii: physiological and proteomic analysis. Appl Environ Microbiol 69:3809–3818CrossRefPubMedGoogle Scholar
  32. Lorca GL, Raya RR, Taranto MP, De Valdez GF (1998) Adaptative acid tolerance response in Lactobacillus acidophilus. Biotechnol Lett 20:239–241CrossRefGoogle Scholar
  33. Lou Y, Yousef AE (1997) Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors. Appl Environ Microbiol 63:1252–1255PubMedGoogle Scholar
  34. Lyon WJ, Glatz BA (1993) Isolation and purification of propionicin PLG-1, a bacteriocin produced by a strain of Propionibacterium thoenii. Appl Environ Microbiol 59:83–88PubMedGoogle Scholar
  35. Ma D, Cook DN, Alberti M, Pon NG, Nikaido H, Hearst JE (1995) Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol 16:45–55PubMedGoogle Scholar
  36. Mackey AJ, Haystead TA, Pearson WR (2002) Getting more from less: algorithms for rapid protein identification with multiple short peptide sequences. Mol Cell Proteomics 1:139–147CrossRefPubMedGoogle Scholar
  37. Malik AC, Reinbold GW, Vedamuthu ER (1968) An evaluation of the taxonomy of Propionibacterium. Can J Microbiol 14:1185–1191PubMedGoogle Scholar
  38. Mantere-Alhonen S (1995) Propionibacteria used as probiotics—A review. Lait 75:447–452Google Scholar
  39. Mooney C, Munster DJ, Bagshaw PF, Allardyce RA (1990) Helicobacter pylori acid resistance. Lancet 335:1232PubMedGoogle Scholar
  40. Mori H, Sato Y, Taketomo N, Kamiyama T, Yoshiyama Y, Meguro S, Sato H, Kaneko T (1997) Isolation and structural identification of bifidogenic growth stimulator produced by Propionibacterium freudenreichii . J Dairy Sci 80:1959–1964PubMedGoogle Scholar
  41. Moulis JM, Davasse V, Meyer J, Gaillard J (1996) Molecular mechanism of pyruvate-ferredoxin oxidoreductases based on data obtained with the Clostridium pasteurianum enzyme. FEBS Lett 380:287–290CrossRefPubMedGoogle Scholar
  42. Murtif VL, Bahler CR, Samols D (1985) Cloning and expression of the 1.3S biotin-containing subunit of transcarboxylase. Proc Natl Acad Sci U S A 82:5617–5621PubMedGoogle Scholar
  43. O’Sullivan E, Condon S (1997) Intracellular pH is a major factor in the induction of tolerance to acid and other stresses in Lactococcus lactis. Appl Environ Microbiol 63:4210–4215PubMedGoogle Scholar
  44. Pérez Chaia A, Zarate G, Oliver G (1999) The probiotic properties of propionibacteria. Lait 79:175–185Google Scholar
  45. Periago PM, van Schaik W, Abee T, Wouters JA (2002) Identification of proteins involved in the heat stress response of Bacillus cereus ATCC 14579. Appl Environ Microbiol 68:3486–3495CrossRefPubMedGoogle Scholar
  46. Perrot F, Hebraud M, Charlionet R, Junter GA, Jouenne T (2001) Cell immobilization induces changes in the protein response of Escherichia coli K-12 to a cold shock. Electrophoresis 22:2110–2119CrossRefPubMedGoogle Scholar
  47. Petersohn A, Brigulla M, Haas S, Hoheisel JD, Volker U, Hecker M (2001) Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 183:5617–5631CrossRefPubMedGoogle Scholar
  48. Segal G, Ron EZ (1998) Regulation of heat-shock response in bacteria. Ann NY Acad Sci 851:147–151PubMedGoogle Scholar
  49. Shah NP (2000) Probiotic bacteria: selective enumeration and survival in dairy foods. J Dairy Sci 83:894–907PubMedGoogle Scholar
  50. Thanassi DG, Cheng LW, Nikaido H (1997) Active efflux of bile salts by Escherichia coli. J Bacteriol 179:2512–2518PubMedGoogle Scholar
  51. Thierry A, Salvat-Brunaud D, Madec MN, Michel F, Maubois JL (1998) Affinage de l’emmental: dynamique des populations bactériennes et évolution de la composition de la phase aqueuse. Lait 78:521–542Google Scholar
  52. Wilkins JC, Homer KA, Beighton D (2002) Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions. Appl Environ Microbiol 68:2382–2390CrossRefPubMedGoogle Scholar
  53. Yura T, Nagai H, Mori H (1993) Regulation of the heat-shock response in bacteria. Annu Rev Microbiol 47:321–350PubMedGoogle Scholar
  54. Zarate G, Chaia AP, Gonzalez S, Oliver G (2000) Viability and beta-galactosidase activity of dairy propionibacteria subjected to digestion by artificial gastric and intestinal fluids. J Food Prot 63:1214–1221Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Pauline Leverrier
    • 1
    • 2
  • Johannes P. C. Vissers
    • 3
  • Annette Rouault
    • 1
  • Patrick Boyaval
    • 1
    • 4
  • Gwénaël Jan
    • 1
  1. 1.Laboratoire de Recherches de Technologie LaitièreInstitut National de la Recherche AgronomiqueRennes cedexFrance
  2. 2.Standa IndustrieCaen cedex 4France
  3. 3.Waters Corporation-EU Mass Spectrometry Technologies CentreCE AlmereThe Netherlands
  4. 4.Rhodia FoodDangé St RomainFrance

Personalised recommendations