Archives of Microbiology

, Volume 180, Issue 6, pp 385–393 | Cite as

Type IV pili-related natural transformation systems: DNA transport in mesophilic and thermophilic bacteria



Horizontal gene flow is a driving force for bacterial adaptation. Among the three distinct mechanisms of gene transfer in bacteria, conjugation, transduction, and transformation, the latter, which includes competence induction, DNA binding, and DNA uptake, is perhaps the most versatile mechanism and allows the incorporation of free DNA from diverse bacterial species. Here we review DNA transport machineries mediating uptake of naked DNA in gram-positive and gram-negative bacteria. Different putative models of transformation machineries comprising components similar to proteins of type IV pili are presented. Emphasis is placed on a comparative discussion of the underlying mechanisms of DNA transfer in mesophilic and extremely thermophilic bacteria, highlighting conserved and distinctive features of these transformation machineries.


Natural transformation Competence proteins Type IV pili 



Work from the authors laboratory was supported by grants Av 9/4–4, Av/9/4–5 and Av9/5–1 from the Deutsche Forschungsgemeinschaft. A. Friedrich was supported by the Stiftung Stipendien Fonds des Verbandes der Chemischen Industrie. The authors thank Nathan Weyand (Oregon Health Sciences University, Portland, Oregon) for critically reading the manuscript.


  1. Aas FE, Wolfgang M, Frye S, Dunham S, Lovold C, Koomey M (2002) Competence for natural transformation in Neisseria gonorrhoeae: components of DNA binding and uptake linked to type IV pilus expression. Mol Microbiol 46:749–760CrossRefPubMedGoogle Scholar
  2. Aravind I, Tatusov RL, Wolf YL, Walker DR, Koonin EV (1998) Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends in Gen 14:442–444CrossRefGoogle Scholar
  3. Bitter W (2003) Secretins of Pseudomonas aeruginosa: large holes in the outer membrane. Arch Microbiol 179:307–314PubMedGoogle Scholar
  4. Caston J, Carrascosa J, de Pedro M, Berenguer J (1988) Identification of a crystalline layer on the cell envelope of the thermophilic eubacterium Thermus thermophilus. FEMS Lett 51:225–230CrossRefGoogle Scholar
  5. Chen I, Gotschlich EC (2001) ComE, a competence protein from Neisseria gonorrhoeae with DNA-binding activity. J Bacteriol 183:3160–3168CrossRefPubMedGoogle Scholar
  6. Chen I, Dubnau D (2003) DNA transport during transformation. Frontiers Biosci 8:544–556Google Scholar
  7. Chen LY, Chen DY, Miaw J, Hu NT (1996) XpsD, an outer membrane protein required for protein secretion by Xanthomonas campestris pv. campestris, forms a multimer. J Biol Chem 271:2703–2708CrossRefPubMedGoogle Scholar
  8. Claverys JP, Havarstein LS (2002) Extracellular-peptide control of competence for genetic transformation in Streptococcus pneumoniae. Frontiers Biosci 7:1798–1814Google Scholar
  9. Collins RF, Davidsen L, Derrick JP, Ford RC, Tonjum T (2001) Analysis of the PilQ secretin from Neisseria meningitidis by transmission electron microscopy reveals a dodecameric quaternary structure. J Bacteriol 183:3825–3832CrossRefPubMedGoogle Scholar
  10. De Vries J, Meier P, Wackernagel W (2001) The natural transformation of the soil bacteria Pseudomonas stutzeri and Acinetobacter sp. by transgenic plant DNA strictly depends on homologous sequences in the recipient cells. FEMS Microbiol Lett 195:211–215CrossRefPubMedGoogle Scholar
  11. Doolittle WF (1999) Lateral genomics. Trends Cell Bio 9:M5-M8CrossRefGoogle Scholar
  12. Dougherthy BA, Smith HO (1999) Identification of Haemophilus influenzae Rd transformation genes using cassette mutagenesis. Microbiology 145:401–409PubMedGoogle Scholar
  13. Dubnau D (1999) DNA uptake in bacteria. Annu Rev Microbiol 53:217–244PubMedGoogle Scholar
  14. Forest KT, Tainer JA (1997) Type-4-pilus-structure:outside to inside and top to bottom. Gene 192:165–169PubMedGoogle Scholar
  15. Friedrich A, Hartsch T, Averhoff B (2001) Natural transformation in mesophilic and thermophilic bacteria: Identification and characterization of novel, closely related competence genes in Acinetobacter sp. strain BD413 and Thermus thermophilus HB27. Appl Environ Microbiol 67:3140–3148CrossRefPubMedGoogle Scholar
  16. Friedrich A, Prust C, Hartsch T, Henne A, Averhoff B (2002) Molecular analyses of the natural transformation machinery and identification of pilus structures in the extremely thermophilic bacterium Thermus thermophilus HB27. Appl Environ Microbiol 68:745–755CrossRefPubMedGoogle Scholar
  17. Friedrich A, Rumszauer J, Henne A, Averhoff B (2003) Pilin-like proteins in the extremely thermophilic bacterium Thermus thermophilus HB27: implication in competence for natural transformation and links to type IV pilus biogenesis. Appl Environ Microbiol 69:3695–3700CrossRefPubMedGoogle Scholar
  18. Fussenegger M, Rudel T, Barten R, Ryll R, Meyer TF (1997) Transformation competence and type-4-pilus biogenesis in Neisseria gonorrhoeae - a review. Gene 192:125–134PubMedGoogle Scholar
  19. Genin S, Boucher CA (1994) A superfamily of proteins involved in different secretion pathways in gram-negative bacteria: modular structure and specificity of the N-terminal domain. Mol Gen Genet 243:112–118PubMedGoogle Scholar
  20. Graupner S, Weger N, Sohni M, Wackernagel W (2001) Requirement of novel competence genes pilT and pilU of Pseudomonas stutzeri for natural transformation and suppression of pilT deficiency by a hexahistidine tag on the type IV pilus protein PilAI. J Bacteriol 183:4694–4701CrossRefPubMedGoogle Scholar
  21. Hidaka Y, Hasegawa M, Nakahara T, Hoshino T (1994) The entire population of Thermus thermophilus cells is always competent at any growth phase. Biosci Biotechnol Biochem 58:1338–1339PubMedGoogle Scholar
  22. Hobbs M, Mattick JS (1993) Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol Microbiol 10:233–243PubMedGoogle Scholar
  23. Hofreuter D, Odenbreit S, Haas R (2001) Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol Microbiol 41:379–391CrossRefPubMedGoogle Scholar
  24. Kaiser D (2000) Bacterial motility: How do pili pull? Current Biol 10:R777-R780CrossRefGoogle Scholar
  25. Kang Y, Liu H, Genin S, Schell MA, Denny TP (2002) Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. Mol Microbiol 46:427–437CrossRefPubMedGoogle Scholar
  26. Karudapuram S, Zhao X, Barcak GJ (1995) DNA sequence and characterization of Haemophilus influenzae dprA +, a gene required for chromosomal but not plasmid DNA transformation. J Bacteriol 177:3235–3240PubMedGoogle Scholar
  27. Koyama Y, Hoshino T, Tomizuka N, Furukawa K (1986) Genetic transformation of the extreme thermophile Thermus thermophilus and other Thermus spp. J Bacteriol 166:338–340PubMedGoogle Scholar
  28. Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602PubMedGoogle Scholar
  29. Maier E, Polleichtner G, Boeck B, Schinzel R, Benz R (2001) Identification of the outer membrane porin of Thermus thermophilus HB8: the channel-forming complex has an unusually high molecular mass and an extremely large single-channel conductance. J Bacteriol 183:800–803CrossRefPubMedGoogle Scholar
  30. Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314CrossRefPubMedGoogle Scholar
  31. Merz AJ, So M (2000) Interactions of pathogenic Neisseriae with epithelial cell membranes. Annu Rev Cell Dev Biol 16:423–457CrossRefPubMedGoogle Scholar
  32. Merz AJ, So M, Sheetz MP (2000) Pilus retraction powers bacterial twitching motility. Nature 407:98–102CrossRefPubMedGoogle Scholar
  33. Nelson KE, Clayton R A, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton Gg, Fleischmann RD, Eisen JA, Fraser CM, et al. (1999) Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329PubMedGoogle Scholar
  34. Nouwen N, Stahlberg AP, Pugsley AP, Engel A (2000) Domain structure of secretin PulD revealed by limited proteolysis and electron microscopy. Embo J 19:2229–2236CrossRefPubMedGoogle Scholar
  35. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial evolution. Nature 405:299–304PubMedGoogle Scholar
  36. Palmen R, Hellingwerf KJ (1997) Uptake and processing of DNA by Acinetobacter calcoaceticus. Gene 192:179–190PubMedGoogle Scholar
  37. Pestova EV, Morrison DA (1998) Isolation and characterization of three Streptococcus pneumoniae transformation-specific loci by use of a lacZ reporter insertion vector. J Bacteriol 180:2701–2710PubMedGoogle Scholar
  38. Porstendörfer D, Drotschmann U, Averhoff B (1997) A novel competence gene, comP, is essential for natural transformation of Acinetobacter sp. strain BD413. Appl Environ Microbiol 63:4150–4157PubMedGoogle Scholar
  39. Provvedi R, Dubnau D (1999) ComEA is a DNA receptor for transformation of competent Bacillus subtilis. Mol Microbiol 31:271–280CrossRefPubMedGoogle Scholar
  40. Sauvonnet N, Vignon G, Pugsley AP, Gounon P (2000) Pilus formation and protein secretion by the same machinery in Escherichia coli. EMBO J 19:2221–2228CrossRefGoogle Scholar
  41. Smeets LC, Kusters JG (2002) Natural transformation in Helicobacter pylori: DNA transport in an unexpected way. Trends Microbiol 10:159–162CrossRefPubMedGoogle Scholar
  42. Strom MS, Lory S (1993) Structure-function and biogenesis of the type IV pili. Annu Rev Microbiol 47:565–596PubMedGoogle Scholar
  43. Thanassi DG (2002) Ushers and secretins: channels for the secretion of folded proteins across the bacterial outer membrane. J Mol Microbiol Biotechnol 4:11–20PubMedGoogle Scholar
  44. Tonjum T, Koomey M (1997) The pilus colonization factor of pathogenic neisserial species: organelle biogenesis and structure/function relationship—a review. Gene 192:155–163CrossRefPubMedGoogle Scholar
  45. White O, Eisen JA, Heidelberg JF, Hickey EK, Peterson JD, Dodson RJ, et al (1999) Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286:1571–1577CrossRefPubMedGoogle Scholar
  46. Wolfgang M, Lauer P, Hae-Sun P, Brossay L, Herbert J, Koomey M (1998) PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol Microbiol 29:321–330PubMedGoogle Scholar
  47. Wolfgang M, van Putten JP, Hayes SF, Koomey M (1999) The comP locus of Neisseria gonorrhoeae encodes a type IV prepilin that is dispensable for pilus biogenesis but essential for natural transformation. Mol Microbiol 31:1345–1357PubMedGoogle Scholar
  48. Yoshihara S, Geng X, Okamoto S, Yura K, Murata T, Go M, Ohmori M, Ikeuchi M (2001) Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile Synechocystis sp. PCC6803. Plant Cell Physiol 42:63–73CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department Biologie ILudwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations