Archives of Microbiology

, Volume 181, Issue 1, pp 17–25 | Cite as

Phylogenetic and physiological characterization of a filamentous anoxygenic photoautotrophic bacterium ‘Candidatus Chlorothrix halophila’ gen. nov., sp. nov., recovered from hypersaline microbial mats

  • Joel A. Klappenbach
  • Beverly K. Pierson
Original Paper


We report the phylogenetic and physiological characterization of a mesophilic and halophilic member of the filamentous anoxygenic phototrophic (FAP) bacteria, provisionally named ‘Candidatus Chorothrix halophila’ gen. nov. sp. nov., that has been maintained in a highly enriched culture in our laboratory for over a decade. Phylogenetic analysis of small-subunit RNA-encoding sequences places ‘Candidatus Chlorothrix halophila’ in a clade that includes cultivated members of the genera Chloroflexus and Oscillochloris. Physiological studies demonstrated sulfide-dependent photosynthetic uptake of 14C-labeled bicarbonate. Enzymatic assays for the activity of propionyl-coenzyme A synthase indicated that ‘Candidatus Chlorothrix halophila’ does not use the 3-hydroxypropionate cycle of Chloroflexus aurantiacus OK-70-fl for autotrophic carbon assimilation. New concepts regarding the taxonomy and phylogeny of FAP bacteria have emerged from this work.


Green non-sulfur 3-Hydroxypropionate Candidatus Chlorothrix halophila’ Marine Chloroflexus-like organisms 



Marine Chloroflexus-like organism


Filamentous anoxygenic phototroph



This work was supported by a NASA Astrobiology grant to Arizona State University with a sub-contract to BKP at the University of Puget Sound. We thank M.N. Parenteau, M. Lawrence, E. Morgan and E. Lilja for technical assistance; T.M. Schmidt for advice and use of laboratory equipment; and, the laboratory of N.R. Pace for preliminary work on phylogenetic identification.


  1. Alber BE, Fuchs G (2002) Propionyl-coenzyme A synthase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J Biol Chem 277:12137–12143CrossRefPubMedGoogle Scholar
  2. Ausubel FM, Brent R, Kingston RE, Moore DD, Smith JA, Seidman JG, Struhl K (1987) Current protocols in molecular biology. Wiley, New YorkGoogle Scholar
  3. Beer M, Seviour EM, Kong Y, Cunningham MB, Blackall LL, Seviour RJ (2002) Phylogeny of the filamentous bacterium Eikelboom Type 1851, and design and applications of a 16S rRNA oligonucleotide probe for its fluorescence in situ identification in activated sludge. FEMS Microbiol Lett 207:179–183CrossRefPubMedGoogle Scholar
  4. Boomer SM, Pierson BK, Austinhirst R, Castenholz RW (2000) Characterization of novel bacteriochlorophyll-a-containing red filaments from alkaline hot springs in Yellowstone National Park. Arch Microbiol 174:152–161CrossRefPubMedGoogle Scholar
  5. Boomer SM, Lodge DP, Dutton BE, Pierson BK (2002) Molecular characterization of novel red green nonsulfur bacteria from five distinct hot spring communities in Yellowstone National Park. Appl Environ Microbiol 68:346–355CrossRefPubMedGoogle Scholar
  6. Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Muller KM, Pande N, Shang Z, Yu N, Gutell RR (2002) The Comparative RNA Web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BioMed Central Bioinformatics 3:15CrossRefPubMedGoogle Scholar
  7. Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443CrossRefPubMedGoogle Scholar
  8. D’Amelio ED, Cohen Y, Des Marais DJ (1989) Comparative functional ultrastructure of two hypersaline submerged cyanobacterial mats: Guerrero Negro, Baja California Sur, Mexico, and Solar Lake Sinai, Egypt. In: Cohen Y, Rosenberg E (eds) Microbial mats: physiological ecology of benthic microbial communities. American Society of Microbiology, Washington, DC, pp 97–113Google Scholar
  9. Des Marais DJ, D’Amelio ED, Farmer JD, Jorgensen BB, Palmisano AC, Pierson BK (1992) Case study of a modern microbial mat-building community: the submerged cyanobacterial mats Guerrero Negro, Baja California Sur, Mexico. In: Schopf JW, Klein C (eds) The proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, pp 324–333Google Scholar
  10. Dubinina GA, Gorlenko VM (1975) New filamentous photosynthesizing green bacteria with gas vacuoles. Mikrobiologiya 44:511–517Google Scholar
  11. Felsenstein J (2002) PHYLIP (phylogeny inference package), version 3.6a, 3rd edn. Department of Genetics, University of Washington, Seattle, WashingtonGoogle Scholar
  12. Garrity GM, Holt JG (2001) Phylum BVI. Chloroflexi phy. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, Berlin Heidelberg New York, pp 427–446Google Scholar
  13. Garrity GM, Johnson KL, Bell JA, Searles DB (2002) Taxonomic outline of the procaryotes. Bergey’s manual of systematic bacteriology, 2nd edn. Release 3.0. DOI: 10.1007/bergeysoutline200210. Springer, Berlin Heidelberg New YorkGoogle Scholar
  14. Gerhardt P, Murray GE, Costilow RN, Nester EW, Wood A, Krieg NR, Phillips GB (1981) Manual of methods for general bacteriology. American Society for Microbiology, Washington, DCGoogle Scholar
  15. Gich F, Garcia-Gil J, Overmann J (2001) Previously unknown and phylogenetically diverse members of the green nonsulfur bacteria are indigenous to freshwater lakes. Arch Microbiol 177:1–10CrossRefPubMedGoogle Scholar
  16. Hanada S, Pierson BK (2002) The Family Chloroflexaceae. In: Dworkin M (ed) The Prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. release 3.11, November 22, 2002, Springer, Berlin Heidelberg New York
  17. Hanada S, Takaichi S, Matsuura K, Nakamura K (2002) Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Bacteriol 52:187–193Google Scholar
  18. Herter S, Busch A, Fuchs G (2002) l-Malyl-coenzyme A lyase/β-methylmalyl-coenzyme A lyase from Chloroflexus aurantiacus, a bifunctional enzyme involved in autotrophic CO2 fixation. J Bacteriol 184:5999–6006CrossRefPubMedGoogle Scholar
  19. Holt JG, Castenholz RW (2001) Genus I. Herpetosiphon. In: Garrity GM, Holt JG (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, Berlin Heidelberg New York, pp 445–446Google Scholar
  20. Hugler M, Menendez C, Schagger H, Fuchs G (2002) Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J Bacteriol 184:2404–2410CrossRefGoogle Scholar
  21. Ivanovsky RN, Fal YI, Berg IA, Ugolkova NV, Krasilnikova EN, Keppen OI, Zakharchuc LM, Zyakun AM (1999) Evidence for the presence of the reductive pentose phosphate cycle in a filamentous anoxygenic photosynthetic bacterium, Oscillochloris trichoides strain DG-6. Microbiology 145:1743–1748PubMedGoogle Scholar
  22. Keppen OI, Tourova TP, Kuznetsov BB, Ivanovsky RN, Gorlenko VM (2000) Proposal of Oscillochloridaceae fam. nov. on the basis of a phylogenetic analysis of the filamentous anoxygenic phototrophic bacteria, and emended description of Oscillochloris and Oscillochloris trichoides in comparison with further new isolates. Int J Syst Bacteriol 50:1529–1537Google Scholar
  23. Kohno T, Sei K, Mori K (2002) Characterization of type 1851 organism isolated from activated sludge samples. Water Sci Technol 46:111–114Google Scholar
  24. Kuske CR, Banton KL, Adorada DL, Stark PC, Hill KK, Jackson PJ (1998) Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl Environ Microbiol 64:2463–2472.PubMedGoogle Scholar
  25. Laguerre G, Allard M, Revoy F, Amarger N (1994) Rapid identification of Rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 60:56–63Google Scholar
  26. Lopez-Cortez A (1990) Microbial mats in tidal channels at San Carlos, Baja California Sur, Mexico. Geomicrobiol J 8:69--85Google Scholar
  27. Mack EE, Pierson BK (1988) Preliminary characterization of a temperate marine member of the Chloroflexaceae. In: Olson JM, Ormerod JG, Amexz J, Stackebrandt E, Trüper HG (eds) Green photosynthetic bacteria. Plenum, The Netherlands, pp 237–241Google Scholar
  28. Murray RG, Stackebrandt E (1995) Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol 45:186–187PubMedGoogle Scholar
  29. Nübel U, Bateson MM, Madigan MT, Kuhl M, Ward DM (2001) Diversity and distribution in hypersaline microbial mats of bacteria related to Chloroflexus spp. Appl Environ Microbiol 67:4365–4371CrossRefPubMedGoogle Scholar
  30. Nübel U, Bateson MM, Vandieken V, Wieland A, Kuhl M, Ward DM (2002) Microscopic examination of distribution and phenotypic properties of phylogenetically diverse Chloroflexaceae-related bacteria in hot spring microbial mats. Appl Environ Microbiol 68:4593–4603CrossRefPubMedGoogle Scholar
  31. Pierson BK, Castenholz RW (1995) Taxonomy and physiology of filamentous anoxygenic phototrophs. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, The Netherlands, pp 31–47Google Scholar
  32. Pierson BK, Castenholz RW (2001) Filamentous anoxygenic phototrophic bacteria. In: Garrity GM, Holt JG (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, Berlin Heidelberg New York, pp 427–444Google Scholar
  33. Pierson BK, Giovannoni SJ, Castenholz RW (1984) Physiological ecology of a gliding bacterium containing bacteriochlorophyll a. Appl Environ Microbiol 47:576–584Google Scholar
  34. Pierson BK, Giovannoni SJ, Stahl DA, Castenholz RW (1985) Heliothrix oregonensis, gen. nov., sp. nov, a phototrophic filamentours gliding bacterium containing bacteriochlorophyll a. Arch Microbiol 142:164–167PubMedGoogle Scholar
  35. Pierson BK, Valdez D, Larsen M, Morgan E, Mack EE (1994) Chloroflexus-like organisms from marine and hypersaline environments: distribution and diversity. Photosynthesis Research 41:35–52Google Scholar
  36. Sambrook J, Russell DW, Sambrook J (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  37. Stolz JF (1993) Distribution of phototrophic microbes in the flat laminated microbial mat at Laguna Figueroa, Baja California, Mexico. Biosystems 23:345–357CrossRefGoogle Scholar
  38. Strauss G, Fuchs G (1993) Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. Eur J Biochem 215:633–643PubMedGoogle Scholar
  39. Trüper HG (1976) Higher taxa of the phototrophic bacteria: Chloroflexaceae fam. nov., a family for the gliding, filamentous, phototrophic “green” bacteria. Int J Syst Bacteriol 26:74–75Google Scholar
  40. Ugolkova NV, Ivanovsky RN (2000) On the mechanism of autotrophic fixation of CO2 by Chloroflexus aurantiacus. Microbiology 69:139–142Google Scholar
  41. Venetskaya SL, Gerasimenko LM (1988) Electron-microscopic study of microorganisms in a halophilic cyanobacterial community. Mikrobiologiya 57:450–457Google Scholar
  42. Weller R, Bateson MM, Heimbuch BK, Kopczynski ED, Ward DM (1992) Uncultivated cyanobacteria, Chloroflexus-like inhabitants, and spirochete-like inhabitants of a hot spring microbial mat. Appl Environ Microbiol 58:3964–3969PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Center for Microbial Ecology and Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingUSA
  2. 2.Department of BiologyUniversity of Puget SoundTacomaUSA

Personalised recommendations