Archives of Microbiology

, Volume 180, Issue 5, pp 367–373 | Cite as

Conjugative plasmid pIP501 undergoes specific deletions after transfer from Lactococcus lactis to Oenococcus oeni

Short Communicaton

Abstract

Conjugal transfer of plasmids pIP501 and its derivative pVA797 from Lactococcus lactis to Oenococcus oeni was assayed by filter mating. Plasmid pIP501 was transferred to a number of O. oeni strains whereas a single transconjugant of O. oeni M42 was recovered when pVA797 was used. Physical analysis of the transconjugant plasmids revealed that pIP501 and pVA797 underwent extensive deletions in O. oeni that affected the tra region (conjugal transfer) and SegB region (stability). All derivatives showed segregational instability in O. oeni, but were stably maintained in L. lactis. These differences correlated with the different plasmid copy numbers and the extent of deletions within the SegB region.

Keywords

Oenococcus oeni Lactococcus lactis pIP501 pVA797 Conjugation. 

Abbreviations

CAT

Chloramphenicol acetyltransferase

MLS

Macrolides-lincosamides-streptogramin B resistance

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman, DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedGoogle Scholar
  2. Behnke D, Gilmore MS, Ferretti JJ (1981) Plasmid pGB301, a new multiple resistance streptococcal cloning vehicle and its use in cloning of a gentamicin/kanamycin resistance determinant. Mol Gen Genet 182:414–421PubMedGoogle Scholar
  3. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523PubMedGoogle Scholar
  4. Boe L, Rasmussen KV (1996) Suggestions as to quantitative measurements of plasmid loss. Plasmid 36:153–159CrossRefPubMedGoogle Scholar
  5. Brantl S, Behnke D, Alonso JC (1990) Molecular analysis of the replication region of the conjugative Streptococcus agalactiae plasmid pIP501 in Bacillus subtilis. Comparison with plasmids pAMβ1 and pSM19035. Nucleic Acids Res 18:4783–4790PubMedGoogle Scholar
  6. Camacho AG, Misselwitz R, Behlke J, Ayora S, Welfle K, Meinhart A, Lara B, Saenger W, Welfle H, Alonso JC (2002) In vitro and in vivo stability of the epsilon2zeta2 protein complex of the broad host-range Streptococcus pyogenes pSM19035 addiction system. Biol Chem 383:1701–1713PubMedGoogle Scholar
  7. Caspritz G, Radler F (1983) Malolactic enzyme of Lactobacillus plantarum. J Biol Chem 258:4907–4910PubMedGoogle Scholar
  8. Ceglowski P, Boitsov A, Karamyan N, Chai S, Alonso JC (1993) Characterization of the effectors required for stable inheritance of Streptococcus pyogenes pSM19035-derived plasmids in Bacillus subtilis. Mol Gen Genet 241:579–585PubMedGoogle Scholar
  9. De la Hoz AB, Ayora S, Sitkiewicz I, Fernández S, Pankiewicz R, Alonso JC, Ceglowski P (2000) Plasmid copy-number control and better-than-random segregation genes of pSM19035 share a common regulator. Proc Natl Acad Sci USA 97:728–733CrossRefPubMedGoogle Scholar
  10. Evans RP, Macrina FL (1983) Streptococcal R plasmid pIP501: endonuclease site map, resistance determinant location, and construction of novel derivatives. J Bacteriol 154:1347–1355PubMedGoogle Scholar
  11. Gasson MJ, Davies FL (1980) Conjugal transfer of the drug resistant plasmid pAMß1 in the lactic streptococci. FEMS Microbiol Lett 7:51–53Google Scholar
  12. Horodniceanu T, Bouanchaud DH, Bieth G, Chabbert Y (1976) R plasmids in Streptococcus agalactiae (group B). Antimicrob Agents Chemother 10:795–801PubMedGoogle Scholar
  13. Iwata M (1988) Characterization of a pAMß1 deletion derivative isolated from Lactobacillus casei after conjugation. Biochimie 70:553–558CrossRefPubMedGoogle Scholar
  14. Lafon-Lafourcade S (1983) Wine and Brandy. In: G. Reed (ed) Biotechnology Vol. 5, Verlag-Chemie, Heidelberg, pp 81–163Google Scholar
  15. LeBlanc DJ, Lee LN, Abu-Al-Jaibat A (1992) Molecular, genetic, and functional analysis of the basic replicon of pVA380–1, a plasmid of oral streptococcal origin. Plasmid 28:130–145PubMedGoogle Scholar
  16. Lonvaud-Funel A (1999) Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie van Leeuwenhoek 76:317–331CrossRefPubMedGoogle Scholar
  17. McKay LL, Baldwin KA ,Walsh PM (1980) Conjugal transfer of genetic information in group N streptococci. Appl Environ Microbiol 40:84–89PubMedGoogle Scholar
  18. Nordström K, Austin SJ (1989) Mechanisms that contribute to the stable segregation of plasmids. Annu Rev Genet 23:37–69CrossRefPubMedGoogle Scholar
  19. Pardo I (1987) Estudio de la microflora presente en mostos y vinos de la D.O. Utiel-Requena, Ph.D thesis, Universidad de Valencia, SpainGoogle Scholar
  20. Pucci MJ, Monteschio ME, Kemper CL (1988) Intergeneric and intrageneric conjugal transfer of plasmid-encoded antibiotic resistance determinants in Leuconostoc spp. Appl Environ Microbiol 53:2405–2413Google Scholar
  21. Pujol C, Ehrlich SD, Jannière L (1994) The promiscuous plasmids pIP501 and pAMß1 from Gram-positive bacteria encode complementary resolution functions. Plasmid 31:100–105CrossRefPubMedGoogle Scholar
  22. Rojo F, Alonso JC (1994) A novel site-specific recombinase encoded by the Streptococcus pyogenes plasmid pSM19035. J Mol Biol 238:159–172CrossRefPubMedGoogle Scholar
  23. Romero DA, Slos P, Robert C, Castellino I, Mercenier A (1987) Conjugative mobilization as an alternative vector delivery system for lactic streptococci. Appl Environ Microbiol 53:2405–2413PubMedGoogle Scholar
  24. Sambrook, J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  25. Schuler GD, Altschul SF, Lipman DJ (1991) A workbench for multiple alignment construction and analysis. Proteins 9:180–191PubMedGoogle Scholar
  26. Simon D, Chopin A (1988) Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie 70:559–566CrossRefPubMedGoogle Scholar
  27. Smith MD, Clewell DB (1984) Return of Streptococcus faecalis DNA cloned in Escherichia coli to its original host via transformation of Streptococcus sanguis followed by conjugative mobilization. J Bacteriol 160:1109–1114PubMedGoogle Scholar
  28. Swinfield TJ, Jannière L, Ehrlich SD, Minton NP (1991) Characterization of a region of the Enterococcus faecalis plasmid pAMß1 which enhances the segregational stability of pAMß1-derived cloning vectors in Bacillus subtilis. Plasmid 26:209–221PubMedGoogle Scholar
  29. Terzaghi BE, Sandine WE (1975) Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–809Google Scholar
  30. Thompson JK, McConville KJ, McReynolds C, Collins MA (1999) Potential of conjugal transfer as a strategy for the introduction of recombinant genetic material into strains of Lactobacillus helveticus. Appl Environ Microbiol 65:1910–1914PubMedGoogle Scholar
  31. Van der Lelie D, Venema, G (1987) Bacillus subtilis generates a major specific deletion in pAMß1. Appl Environ Microbiol 53:2458–2463PubMedGoogle Scholar
  32. Walker CW, Brown DFJ (1990) A rapid technique for detection of resistance to chloramphenicol in Streptococcus pneumoniae and comparison with minimum inhibitory concentration and disk-diffusion methods. J Med Microbiol 31:133–136PubMedGoogle Scholar
  33. Zúñiga M, Pardo I, Ferrer S (1993) An improved medium for distinguishing between homofermentative and heterofermentative lactic acid bacteria. Int J Food Microbiol 18:37–42CrossRefPubMedGoogle Scholar
  34. Zúñiga M, Pardo I, Ferrer S (1996) Transposons Tn916 and Tn925 can transfer from Enterococcus faecalis to Leuconostoc oenos. FEMS Microbiol Lett 135:179–185CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Departament de MicrobiologiaUniversitat de València-BurjassotSpain
  2. 2.Instituto de Agroquímica y Tecnología de los AlimentosBurjassotSpain

Personalised recommendations