Archives of Microbiology

, Volume 180, Issue 2, pp 88–100 | Cite as

A transporter of Escherichia coli specific for l- and d-methionine is the prototype for a new family within the ABC superfamily

  • Zhongge Zhang
  • Jérôme N. Feige
  • Abraham B. Chang
  • Iain J. Anderson
  • Vadim M. Brodianski
  • Alexei G. Vitreschak
  • Mikhail S. Gelfand
  • Milton H. SaierJrEmail author
Original Paper


An ABC-type transporter in Escherichia coli that transports both l- and d-methionine, but not other natural amino acids, was identified. This system is the first functionally characterized member of a novel family of bacterial permeases within the ABC superfamily. This family was designated the methionine uptake transporter (MUT) family (TC #3.A.1.23). The proteins that comprise the transporters of this family were analyzed phylogenetically, revealing the probable existence of several sequence-divergent primordial paralogues, no more than two of which have been transmitted to any currently sequenced organism. In addition, MetJ, the pleiotropic methionine repressor protein, was shown to negatively control expression of the operon encoding the ABC-type methionine uptake system. The identification of MetJ binding sites (in gram-negative bacteria) or S-boxes (in gram-positive bacteria) in the promoter regions of several MUT transporter-encoding operons suggests that many MUT family members transport organic sulfur compounds.


Transport Methionine MetD ATP-binding cassette E. coli 



This work was supported by NIH grants GM55434 and GM64368 from the National Institute of General Medical Sciences (to MHS). JNF was supported by a Rhùne-Alpes Fellowship from France. We thank Mary Beth Hiller for her assistance in the preparation of this manuscript.


  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedGoogle Scholar
  2. Ayling PD, Bridgeland ES (1972) Methionine transport in wild-type and transport-defective mutants of Salmonella typhimurium. J Gen Microbiol 73:127–141PubMedGoogle Scholar
  3. Ayling PD, Mojica-a T, Klopotowski T (1979) Methionine transport in Salmonella typhimurium: evidence for at least one low-affinity transport system. J Gen Microbiol 114:227–246PubMedGoogle Scholar
  4. Berlyn MK (1998) Linkage map of Escherichia coli K-12, edition 10: the traditional map. Microbiol Mol Biol Rev 62:814–984PubMedGoogle Scholar
  5. Betteridge PR, Ayling PD (1975) The role of methionine transport-defective mutations in resistance to methionine sulphoximine in Salmonella typhimurium. Mol Gen Genet 138:41–52PubMedGoogle Scholar
  6. Brubaker RR (1972) The genus Yersinia: biochemistry and genetics of virulence. Curr Top Microbiol Immunol 57:111–158PubMedGoogle Scholar
  7. Chanyangam M, Smith AL, Moseley SL, Kuehn M, Jenny P (1991) Contribution of a 28-kilodalton membrane protein to the virulence of Haemophilus influenzae. Infect Immun 59:600–608PubMedGoogle Scholar
  8. Cottam AN, Ayling PD (1989) Genetic studies of mutants in a high-affinity methionine transport system in Salmonella typhimurium. Mol Gen Genet 215:358–363PubMedGoogle Scholar
  9. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645CrossRefPubMedGoogle Scholar
  10. Gal J, Szvetnik A, Schnell R, Kalman M (2002) The metD d-methionine transporter locus of Escherichia coli is an ABC transporter gene cluster. J Bacteriol 184:4930–4932CrossRefPubMedGoogle Scholar
  11. Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548PubMedGoogle Scholar
  12. Greene RC (1996) Biosynthesis of methionine. In Neidhardt FC (ed) Escherichia coli and Salmonella: cellular and molecular miology, 2nd edn, vol 1. ASM Press, Washington DC, pp. 542–560Google Scholar
  13. Grundy CE, Ayling PD (1992) Fine structure mapping and complementation studies of the metD methionine transport system in Salmonella typhimurium. Genet Res 60:1–6PubMedGoogle Scholar
  14. Grundy FJ, Henkin TM (1998) The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in gram-positive bacteria. Mol Microbiol 30:737–749CrossRefPubMedGoogle Scholar
  15. Guzman L-M, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130PubMedGoogle Scholar
  16. Hendricks JK, Mobley HL (1997) Helicobacter pylori ABC transporter: effect of allelic exchange mutagenesis on urease activity. J Bacteriol 179:5892–5902PubMedGoogle Scholar
  17. Kadner RJ (1974) Transport systems for l-methionine in Escherichia coli. J Bacteriol 117:232–241PubMedGoogle Scholar
  18. Kadner RJ (1975) Regulation of methionine transport activity in Escherichia coli. J Bacteriol 122:110–119PubMedGoogle Scholar
  19. Kadner RJ (1977) Transport and utilization of d-methionine and other methionine sources in Escherichia coli. J Bacteriol 129:207–216PubMedGoogle Scholar
  20. Kadner RJ, Watson WJ (1974) Methionine transport in Escherichia coli: physiological and genetic evidence for two uptake systems. J Bacteriol 119:401–409PubMedGoogle Scholar
  21. Kadner RJ, Winkler HH (1975) Energy coupling for methionine transport in Escherichia coli. J Bacteriol 123:985–991PubMedGoogle Scholar
  22. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580CrossRefPubMedGoogle Scholar
  23. Kuan G, Dassa E, Saurin W, Hofnung M, Saier MH Jr (1995) Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res Microbiol 146:271–278CrossRefPubMedGoogle Scholar
  24. Liu R, Blackwell TW, States DJ (2001) Conformational model for binding site recognition by the E. coli MetJ transcription factor. Bioinformatics 17:622–633CrossRefPubMedGoogle Scholar
  25. Merlin C, Gardiner G, Durand S, Masters M (2002) The Escherichia coli metD locus encodes an ABC transporter which includes Abc (MetN), YaeE (MetI), and YaeC (MetQ). J Bacteriol 184:5513–5517CrossRefPubMedGoogle Scholar
  26. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  27. Panina EM, Mironov AA, Gelfand MS (2001) Comparative analysis of FUR regulons in gamma-proteobacteria. Nucleic Acids Res 29:5195–5206CrossRefPubMedGoogle Scholar
  28. Pattery T, Hernalsteens JP, De Greve H (1999) Identification and molecular characterization of a novel Salmonella enteritidis pathogenicity islet encoding an ABC transporter. Mol Microbiol 33:791–805CrossRefPubMedGoogle Scholar
  29. Poland J, Ayling PD (1984) Methionine and glutamine transport systems in d-methionine utilising revertants of Salmonella typhimurium. Mol Gen Genet 194:219–226PubMedGoogle Scholar
  30. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277PubMedGoogle Scholar
  31. Saint-Girons I, Duchange N, Cohen GN, Zakin MM (1984) Structure and autoregulation of the metJ regulatory gene in Escherichia coli. J Biol Chem 259:14282–14285PubMedGoogle Scholar
  32. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  33. Sekowska A, Kung HF, Danchin A (2000) Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. J Mol Microbiol Biotechnol 2:145–177PubMedGoogle Scholar
  34. Sonnhammer EL, von Heijne G, Krogh A. (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182PubMedGoogle Scholar
  35. Thanbichler M, Neuhierl B, Bock A (1999) S-methylmethionine metabolism in Escherichia coli. J Bacteriol 181:662–665PubMedGoogle Scholar
  36. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedGoogle Scholar
  37. Tusnady GE, Simon I (1998) Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 283:489–506PubMedGoogle Scholar
  38. Tusnady GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850CrossRefPubMedGoogle Scholar
  39. Weissbach H, Brot N (1991) Regulation of methionine synthesis in Escherichia coli. Mol Microbiol 5:1593–1597PubMedGoogle Scholar
  40. Yamaguchi K, Inouye M (1988) Lipoprotein 28, an inner membrane protein of Escherichia coli encoded by nlpA, is not essential for growth. J Bacteriol 170:3747–3749PubMedGoogle Scholar
  41. Yu F, Inouye S, Inouye M (1986) Lipoprotein-28, a cytoplasmic membrane lipoprotein from Escherichia coli. Cloning, DNA sequence, and expression of its gene. J Biol Chem 261:2284–2288PubMedGoogle Scholar
  42. Zhang Z, Aboulwafa M, Smith M, Saier MH Jr. (2003) The ascorbate transporter of Escherichia coli. J Bacteriol 185:2243–2250Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Zhongge Zhang
    • 1
  • Jérôme N. Feige
    • 1
  • Abraham B. Chang
    • 1
  • Iain J. Anderson
    • 2
  • Vadim M. Brodianski
    • 3
  • Alexei G. Vitreschak
    • 4
  • Mikhail S. Gelfand
    • 5
  • Milton H. SaierJr
    • 1
    Email author
  1. 1.Division of Biological SciencesUniversity of California at San DiegoLa JollaUSA
  2. 2.Integrated GenomicsChicagoUSA
  3. 3.Integrated Genomics-MoscowMoscow Russia
  4. 4.Institute of Information Transmission ProblemsMoscow Russia
  5. 5.State Scientific Center GosNIIGenetikaMoscow Russia

Personalised recommendations