Archives of Microbiology

, Volume 179, Issue 6, pp 394–401 | Cite as

Palaeococcus helgesonii sp. nov., a facultatively anaerobic, hyperthermophilic archaeon from a geothermal well on Vulcano Island, Italy

  • Jan P. AmendEmail author
  • D'Arcy R. Meyer-Dombard
  • Seema N. Sheth
  • Natalya Zolotova
  • Andrea C. Amend
Original Paper


A novel, hyperthermophilic archaeon was isolated from a shallow geothermal well that taps marine waters on the Island of Vulcano in the southern Tyrrhenian Sea, Italy. The cells were irregular cocci, 0.6–1.5 μm in diameter, with multiple polar flagella. Growth was observed at temperatures from 45 to 85 °C (optimum at ~80 °C), pH 5–8 (optimum at 6.5), and 0.5–6.0% NaCl (optimum at ~2.8%). The minimum doubling time was 50 min. The isolate was obligately chemoheterotrophic, utilizing complex organic compounds including yeast or beef extract, peptone, tryptone, or casein for best growth. The presence of elemental sulfur enhanced growth. The isolate grew anaerobically as well as microaerobically. The G+C content of the genomic DNA was 42.5 mol%. The 16S rRNA sequence indicated that the new isolate was a member of the Thermococcales within the euryarchaeota, representing the second species in the genus Palaeococcus. Its physiology and phylogeny differed in several key characteristics from those of Palaeococcus ferrophilus, justifying the establishment of a new species; the name Palaeococcus helgesonii sp. nov. is proposed, type strain PI1 (DSM 15127).


Palaeococcus Hyperthermophilic archaeon Shallow marine hydrothermal system Facultative anaerobe Microaerophilic growth 



We thank Melanie Holland for assistance in constructing the phylogenetic tree and for providing the sequence of the 23S primer 64Ra designed by her. Help with electron and light microscopy from Sherry Cady and Niki Parenteau at Portland State University and Wandy Beatty at the Molecular Microbiology Imaging Facility at Washington University is greatly appreciated. This work benefited from field assistance by and discussions with Everett Shock, Sergio Gurrieri, Salvo Inguaggiato, Franco Italiano, and Toti Francofonte. JPA would like to thank Hal Helgeson for introducing him to the scientific opportunities afforded by the hydrothermal system of the Aeolian Islands, but more importantly, for introducing him to Mariano Valenza, Mario Nuccio, and Sergio Gurrieri in Palermo, without whom none of this work could have been started, let alone come to fruition. Financial support was provided by NSF Grants OCE-9714288 and OCE-0221417 to JPA and NASA-GSRP grant NGT5-50348 to DRM-D.


  1. Aiuppa A, Dongarra G, Capasso G, Allard P (2000) Trace elements in the groundwaters of Vulcano Island (Sicily). J Volcanol Geoth Res 98:189–207CrossRefGoogle Scholar
  2. Amend JP, Amend AC, Valenza M (1998) Determination of volatile fatty acids in the hot springs of Vulcano, Aeolian Islands, Italy. Org Geochem 28:699–705CrossRefGoogle Scholar
  3. Amend JP, Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev 25:175–243CrossRefPubMedGoogle Scholar
  4. Baross JA (1995) Isolation, growth, and maintenance of hyperthermophiles. In: Robb FT, Place AR (eds) Archaea, a laboratory manual. Thermophiles. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 15–23Google Scholar
  5. Belkin S, Jannasch HW (1985) A new extremely thermophilic, sulfur-reducing heterotrophic, marine bacterium. Arch Microbiol 141:181–186Google Scholar
  6. Blamey J, Chiong M, Lopez C, Smith E (1999) Optimization of the growth conditions of the extremely thermophilic microorganisms Thermococcus celer and Pyrococcus woesei. J Microbiol Methods 38:169–175CrossRefPubMedGoogle Scholar
  7. Blöchl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1:14–21CrossRefPubMedGoogle Scholar
  8. Capaccioni B, Tassi F, Vaselli O (2001) Organic and inorganic geochemistry of low temperature gas discharges at the Baia di Levante beach, Vulcano Island, Italy. J Volcanol Geoth Re 108:173–185CrossRefGoogle Scholar
  9. Capasso G, Favara R, Francofonte S, Inguaggiato S (1999) Chemical and isotopic variations in fumarolic discharge and thermal waters at Vulcano Island (Aeolian Islands, Italy). J Volcanol Geoth Res 88:167–175CrossRefGoogle Scholar
  10. Capasso G, D'Alessandro W, Favara R, Inguaggiato S, Parello F (2001) Interaction between the deep fluids and the shallow groundwaters on Vulcano Island (Italy). J Volcanol Geoth Res 108:189–200Google Scholar
  11. Cashion P, Holder-Franklin MA, McCully J, Franklin M (1977) A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466PubMedGoogle Scholar
  12. Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE et al. (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358PubMedGoogle Scholar
  13. Dirmeier R, Keller M, Hafenbradl D, Braun F-J, Rachel R, Burggraf S, Stetter KO (1998) Thermococcus acidaminovorans sp. nov., a new hyperthermophilic alkalophilic archaeon growing on amino acids. Extremophiles 2:109–114CrossRefPubMedGoogle Scholar
  14. Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791Google Scholar
  15. Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch Microbiol 145:56–61Google Scholar
  16. Fiala G, Stetter KO, Jannasch HW, Langworthy TA, Madon J (1986) Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing to 98 °C. Syst Appl Microbiol 8:106–113Google Scholar
  17. Fischer F, Zillig W, Stetter KO, Schreiber G (1983) Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 301:511–513PubMedGoogle Scholar
  18. Gonzalez JM, Sheckells D, Viebahn M, Krupatkina D, Borges KM, Robb FT (1999) Thermococcus waiotapuensis sp. nov., an extremely thermophilic archaeon isolated from a freshwater hot spring. Arch Microbiol 172:95–101PubMedGoogle Scholar
  19. Gugliandolo C, Italiano F, Maugeri TL, Inguaggiato S, Caccamo D, Amend JP (1999) Submarine hydrothermal vents of the Aeolian islands: relationship between microbial communities and thermal fluids. Geomicrobiol J 16:105–117Google Scholar
  20. Hafenbradl D, Keller M, Dirmeier R, Rachel R, Rossnagel P, Burggraf S, Huber H, Stetter KO (1996) Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch Microbiol 166:308–314CrossRefPubMedGoogle Scholar
  21. Huber H, Jannasch H, Rachel R, Fuchs T, Stetter KO (1997) Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfur reducer, isolated from abyssal black smokers. Syst Appl Microbiol 20:374–380Google Scholar
  22. Huber R, Stetter KO (2001) Discovery of hyperthermophilic microorganisms. Methods Enzymol 330:11–24PubMedGoogle Scholar
  23. Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch Microbiol 144:324–333Google Scholar
  24. Huber R, Stöhr J, Hohenhaus S, Rachel R, Burggraf S, Jannasch HW, Stetter KO (1995) Thermococcus chitonophagus sp. nov., a novel, chitin-degrading, hyperthermophilic archaeum from a deep-sea hydrothermal environment. Arch Microbiol 164:255–264Google Scholar
  25. Kashefi K, Tor JM, Holmes DE, Gaw Van Praagh CV, Reysenbach A-L, Lovley DR (2002) Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Int J Syst Evol Microbiol 52:719–728CrossRefPubMedGoogle Scholar
  26. Keller M, Braun F-J, Dirmeier R, Hafenbrandl D, Burggraf S, Rachel R, Stetter KO (1995) Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Arch Microbiol 164:390–395CrossRefPubMedGoogle Scholar
  27. Klages KU, Morgan HW (1994) Characterization of an extremely thermophilic sulphur-metabolizing archaebacterium belonging to the Thermococcales. Arch Microbiol 162:261–266CrossRefGoogle Scholar
  28. Mesbah M, Premachandran U, Whitman W (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167Google Scholar
  29. Neuner A, Jannasch HW, Belkin S, Stetter KO (1990) Thermococcus litoralis sp. nov.: A new species of extremely thermophilic marine archaebacteria. Arch Microbiol 153:205–207Google Scholar
  30. Noll KM, Childers SE (2000) Sulfur metabolism among hyperthermophiles. Cellular Origin Life Extreme Habitats 2:95–105Google Scholar
  31. Page RDM (1996) TREEVIEW: An application to display phylogenetic trees on personal computers. Comp Appl Biosci 12:357–358PubMedGoogle Scholar
  32. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting of aquatic microflora. Limnol Oceanogr 25:943–948Google Scholar
  33. Ronimus RS, Reysenbach A-L, Musgrave DR, Morgan HW (1997) The phylogenetic position of the Thermococcus isolate AN1 based on 16S rRNA gene sequence analysis: a proposal that AN1 represents a new species, Thermococcus zilligii sp. nov. Arch Microbiol 168:245–248PubMedGoogle Scholar
  34. Sedwick PN, McMurtry GM, Hilton D, Goff F (1994) Carbon dioxide and helium in hydrothermal fluids from Loihi Seamount, Hawaii, USA: temporal variability and implications for the release of mantle volatiles. Geochim Cosmochim Acta 58:1219–1227Google Scholar
  35. Stetter KO (1982) Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105 °C. Nature 300:258–260Google Scholar
  36. Stetter KO (1988) Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic arachaebacteria. Syst Appl Microbiol 10:172–173Google Scholar
  37. Stetter KO, Lauerer G, Thomm M, Neuner A (1987) Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science 236:822–824Google Scholar
  38. Takai K, Sugai A, Itoh T, Horikoshi K (2000) Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:489–500PubMedGoogle Scholar
  39. Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128Google Scholar
  40. Zillig W, Holz I, Janekovic D, Schäfer W, Reiter WD (1983) The archaebacterium Thermococcus celer represent a novel genus within the thermophilic branch of the Archaebacteria. Syst Appl Microbiol 4:88–94Google Scholar
  41. Zillig W, Holz I, Klenk H-P, Trent J, Wunderl S, Janekovic D, Imsel E, Haas B (1987) Pyrococcus woesei, sp. nov. an ultra-thermophilic marine archaebacterium, representing a nover order, Thermococcales. Syst Appl Microbiol 9:62–70Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Jan P. Amend
    • 1
    • 2
    Email author
  • D'Arcy R. Meyer-Dombard
    • 1
  • Seema N. Sheth
    • 1
  • Natalya Zolotova
    • 1
  • Andrea C. Amend
    • 1
  1. 1.Department of Earth and Planetary Sciences and Division of Biology and Biomedical SciencesWashington UniversitySt. LouisUSA
  2. 2.Department of Earth and Planetary SciencesWashington UniversitySt. LouisUSA

Personalised recommendations