Archives of Microbiology

, Volume 179, Issue 5, pp 307–314 | Cite as

Secretins of Pseudomonas aeruginosa: large holes in the outer membrane

  • Wilbert BitterEmail author


Pseudomonas aeruginosa produces a large number of exoproteins, ranging from the ADP-ribosyltransferases exotoxin A and ExoS to degradative enzymes, such as elastase and chitinase. As it is a gram-negative bacterium, P. aeruginosa must be able to transport these exoproteins across both membranes of the cell envelope. In addition, also proteins that are part of cellular appendages, such as type IV pili and flagella, have to cross the cell envelope. Whereas the majority of the proteins transported across the inner membrane are dependent on the Sec channel, the systems for translocation across the outer membrane seem to be more diverse. Gram-negative bacteria have invented a number of different strategies during the course of evolution to achieve this goal. Although these transport machineries seem to be radically different, many of them actually depend on a member of the secretin protein family for their function. Recent results show that secretins form a large complex in the outer membrane, which constitutes the actual translocation channel. Understanding the working mechanism of this protein translocation channel could open up new strategies to target molecular machineries at the heart of many important virulence factors.


Secretin Outer membrane Exoprotein Pseudomonas aeruginosa Pili 



I thank Christina Vandenbroucke-Grauls for critically reading the manuscript and Hans de Cock for help with electron microscopic analysis of XcpQ.


  1. Andersen C, Hughes C, Koronakis V (2000) Chunnel vision. Export and efflux through bacterial channel-tunnels. EMBO Rep 1:313–318CrossRefPubMedGoogle Scholar
  2. Ast VM, Schoenhofen IC, Langen GR, Stratilo CW, Chamberlain MD, Howard SP (2002) Expression of the ExeAB complex of Aeromonas hydrophila is required for the localization and assembly of the ExeD secretion port multimer. Mol Microbiol 44:217–231CrossRefPubMedGoogle Scholar
  3. Ball G, Durand E, Lazdunski A, Filloux A (2002) A novel type II secretion system in Pseudomonas aeruginosa. Mol Microbiol 43:475–485CrossRefPubMedGoogle Scholar
  4. Bitter W, Koster M, Latijnhouwers M, de Cock H, Tommassen, J (1998) Formation of oligomeric rings by XcpQ and PilQ, which are involved in protein transport across the outer membrane of Pseudomonas aeruginosa. Mol Microbiol 27:209–219CrossRefPubMedGoogle Scholar
  5. Bouley J, Condemine G, Shevchik VE (2001) The PDZ domain of OutC and the N-terminal region of OutD determine the secretion specificity of the type II out pathway of Erwinia chrysanthemi. J Mol Biol 308:205–219CrossRefPubMedGoogle Scholar
  6. Braun P, de Groot A, Bitter W, Tommassen, J (1998) Secretion of elastinolytic enzymes and their propeptides by Pseudomonas aeruginosa. J Bacteriol 180:3467–3469PubMedGoogle Scholar
  7. Brok R, Van Gelder P, Winterhalter M, Ziese U, Koster AJ, de Cock H, Koster M, Tommassen J, Bitter W (1999) The C-terminal domain of the Pseudomonas secretin XcpQ forms oligomeric rings with pore activity. J Mol Biol 294:1169–1179CrossRefPubMedGoogle Scholar
  8. Christie PJ (2001) Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol Microbiol 40:294–305CrossRefPubMedGoogle Scholar
  9. Collins RF, Davidsen L, Derrick JP, Ford RC, Tonjum T (2001) Analysis of the PilQ secretin from Neisseria meningitidis by transmission electron microscopy reveals a dodecameric quaternary structure. J Bacteriol 183:3825–3832CrossRefPubMedGoogle Scholar
  10. Condemine G, Shevchik VE (2000) Overproduction of the secretin OutD suppresses the secretion defect of an Erwinia chrysanthemi outB mutant. Microbiology 146:639–647PubMedGoogle Scholar
  11. Cornelis GR, Van Gijsegem F (2000) Assembly and function of type III secretory systems. Annu Rev Microbiol 54:735–774.CrossRefPubMedGoogle Scholar
  12. Crago AM, Koronakis V (1998) Salmonella InvG forms a ring-like multimer that requires the InvH lipoprotein for outer membrane localization. Mol Microbiol 30:47–56CrossRefPubMedGoogle Scholar
  13. Daefler S, Russel M (1998) The Salmonella typhimurium InvH protein is an outer membrane lipoprotein required for the proper localization of InvG. Mol Microbiol 28:1367–1380CrossRefPubMedGoogle Scholar
  14. Daefler S, Russel M, Model P (1997a) Module swaps between related translocator proteins pIV(f1), pIV(IKe) and PulD: identification of a specificity domain. J Mol Biol 266:978–992CrossRefPubMedGoogle Scholar
  15. Daefler S, Guilvout I, Hardie KR, Pugsley AP, Russel M (1997b) The C-terminal domain of the secretin PulD contains the binding site for its cognate chaperone, PulS, and confers PulS dependence on pIVf1 function. Mol Microbiol 24:465–475PubMedGoogle Scholar
  16. Drake SL, Sandstedt SA, Koomey M (1997) PilP, a pilus biogenesis lipoprotein in Neisseria gonorrhoeae, affects expression of PilQ as a high-molecular-mass multimer. Mol Microbiol 23:657–668PubMedGoogle Scholar
  17. Dubnau D (1999) DNA uptake in bacteria. Annu Rev Microbiol 53:217–244PubMedGoogle Scholar
  18. Duong F, Bonnet E, Geli V, Lazdunski A, Murgier M, Filloux A (2001) The AprX protein of Pseudomonas aeruginosa: a new substrate for the Apr type I secretion system. Gene 262:147–153CrossRefPubMedGoogle Scholar
  19. Filloux A, Michel G, Bally M (1998) GSP-dependent secretion in Gram-negative bacteria: the Xcp system of Pseudomonas aeruginosa. FEMS Microbiol Rev 22:177–198CrossRefPubMedGoogle Scholar
  20. Folders J, Tommassen J, van Loon LC, Bitter W (2000) Identification of a chitin-binding protein secreted by Pseudomonas aeruginosa. J Bacteriol 182:1257–1263CrossRefPubMedGoogle Scholar
  21. Folders J, Algra J, Roelofs MS, van Loon LC, Tommassen J, Bitter W (2001) Characterization of Pseudomonas aeruginosa chitinase, a gradually secreted protein. J Bacteriol 183:7044–7052CrossRefPubMedGoogle Scholar
  22. Genin B, Boucher CA (1994) A superfamily of proteins involved in different secretion pathways in gram-negative bacteria: modular structure and specificity of the N-terminal domain. Mol Gen Genet 243:112–118PubMedGoogle Scholar
  23. Hahn HP (1997) The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa. Gene 192:99–108CrossRefPubMedGoogle Scholar
  24. Hancock RE (1997) The bacterial outer membrane as a drug barrier. Trends Microbiol 5:37–42CrossRefPubMedGoogle Scholar
  25. Hardie KR, Lory S, Pugsley AP (1996) Insertion of an outer membrane protein in Escherichia coli requires a chaperone-like protein. EMBO J 15:978–988PubMedGoogle Scholar
  26. Henderson IR, Navarro-Garcia F, Nataro JP (1998) The great escape: structure and function of the autotransporter proteins. Trends Microbiol 6:370–378CrossRefPubMedGoogle Scholar
  27. Jacob-Dubuisson F, Locht C, Antoine R (2001) Two-partner secretion in gram-negative bacteria: a thrifty, specific pathway for large virulence proteins. Mol Microbiol 40:306–313CrossRefPubMedGoogle Scholar
  28. Kazmierczak BI, Mielke DL, Russel M, Model P (1994) pIV, a filamentous phage protein that mediates phage export across the bacterial cell envelope, forms a multimer. J Mol Biol 238:187–198CrossRefPubMedGoogle Scholar
  29. Koster M, Bitter W, de Cock H, Allaoui A, Cornelis GR, Tommassen J (1997) The outer membrane component, YscC, of the Yop secretion machinery of Yersinia enterocolitica forms a ring-shaped multimeric complex. Mol Microbiol 26:789–797PubMedGoogle Scholar
  30. Kubori T, Matsushima Y, Nakamura D, Uralil J, Lara-Tejero M, Sukhan A, Galan JE, Aizawa SI (1998) Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280:602–605CrossRefPubMedGoogle Scholar
  31. Létoffé S, Redeker V, Wandersman C (1998) Isolation and characterization of an extracellular haem-binding protein from Pseudomonas aeruginosa that shares function and sequence similarities with the Serratia marcescens HasA haemophore. Mol Microbiol 28:1223–1234CrossRefPubMedGoogle Scholar
  32. Linderoth NA, Simon MN, Russel M (1997) The filamentous phage pIV multimer visualized by scanning transmission electron microscopy. Science 278:1635–1638CrossRefPubMedGoogle Scholar
  33. MacRae TH, Dobson WJ, McCurdy HD (1977) Fimbriation in gliding bacteria. Can J Microbiol 23:1096–1108PubMedGoogle Scholar
  34. Marciano DK, Russel M, Simon SM (1999) An aqueous channel for filamentous phage export. Science 284:1516–1519CrossRefPubMedGoogle Scholar
  35. Martin PR, Hobbs M, Free PD, Jeske Y, Mattick JS (1993) Characterization of pilQ, a new gene required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol 9:857–868PubMedGoogle Scholar
  36. Martinez A, Ostrovsky P, Nunn DN (1998) Identification of an additional member of the secretin superfamily of proteins in Pseudomonas aeruginosa that is able to function in type II protein secretion. Mol Microbiol 28:1235–1246CrossRefPubMedGoogle Scholar
  37. Mattick JS, Whitchurch CB, Alm RA (1996) The molecular genetics of type-4 fimbriae in Pseudomonas aeruginosa. Gene 179:147–155CrossRefPubMedGoogle Scholar
  38. Michel G, Ball G, Goldberg JB, Lazdunski A (2000) Alteration of the lipopolysaccharide structure affects the functioning of the Xcp secretory system in Pseudomonas aeruginosa. J Bacteriol 182:696–703CrossRefPubMedGoogle Scholar
  39. Newhall WJ, Wilde CE, Sawyer WD, Haak RA (1980) High-molecular-weight antigenic protein complex in the outer membrane of Neisseria gonorrhoeae. Infect Immun 27:475–482PubMedGoogle Scholar
  40. Nouwen N, Ranson N, Saibil H, Wolpensinger B, Engel A, Ghazi A, Pugsley AP (1999) Secretin PulD: association with pilot PulS, structure, and ion-conducting channel formation. Proc Natl Acad Sci USA 96:8173–8177CrossRefPubMedGoogle Scholar
  41. Nouwen N, Stahlberg H, Pugsley AP, Engel A (2000) Domain structure of secretin PulD revealed by limited proteolysis and electron microscopy. EMBO J 19:2229–2236CrossRefPubMedGoogle Scholar
  42. Okino N, Ichinose S, Omori A, Imayama S, Nakamura T, Ito M (1999) Molecular cloning, sequencing, and expression of the gene encoding alkaline ceramidase from Pseudomonas aeruginosa. J Biol Chem 274:36616–36622CrossRefPubMedGoogle Scholar
  43. Opalka N, Beckmann R, Boisset N, Simon MN, Russel M, Darst SA (2003) Structure of the filamentous phage pIV multimer by cryo-electron microscopy. J Mol Biol 325:461–470CrossRefPubMedGoogle Scholar
  44. Ostroff RM, Vasil AI, Vasil ML (1990) Molecular comparison of a non-hemolytic and a hemolytic phospholipase C from Pseudomonas aeruginosa. J Bacteriol 172:5915–5923PubMedGoogle Scholar
  45. Sandkvist M (2001a) Type II secretion and pathogenesis. Infect Immun 69:3523–3535CrossRefPubMedGoogle Scholar
  46. Sandkvist M (2001b) Biology of type II secretion. Mol Microbiol 40:271–283CrossRefPubMedGoogle Scholar
  47. Schmidt SA, Bieber D, Ramer SW, Hwang J, Wu CY, Schoolnik G (2001) Structure-function analysis of BfpB, a secretin-like protein encoded by the bundle-forming-pilus operon of enteropathogenic Escherichia coli. J Bacteriol 183:4848–4859CrossRefPubMedGoogle Scholar
  48. Schulz GE (2000) β-Barrel membrane proteins. Curr Opin Struct Biol 10:443–447PubMedGoogle Scholar
  49. Scott ME, Dossani ZY, Sandkvist M (2001) Directed polar secretion of protease from single cells of Vibrio cholerae via the type II secretion pathway. Proc Natl Acad Sci USA 98:13978–13983CrossRefPubMedGoogle Scholar
  50. Shevchik VE, Condemine G (1998) Functional characterization of the Erwinia chrysanthemi OutS protein, an element of a type II secretion system. Microbiology 144:3219–3228PubMedGoogle Scholar
  51. Skerker JM, Shapiro L (2000) Identification and cell cycle control of a novel pilus system in Caulobacter crescentus. EMBO J 19:3223–3234Google Scholar
  52. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964PubMedGoogle Scholar
  53. Wall D, Kolenbrander PE, Kaiser D (1999) The Myxococcus xanthus pilQ (sglA) gene encodes a secretin homolog required for type IV pilus biogenesis, social motility, and development. J Bacteriol 181:24–33PubMedGoogle Scholar
  54. Wilderman PJ, Vasil AI, Johnson Z, Wilson MJ, Cunliffe HE, Lamont IL, Vasil ML (2001) Characterization of an endoprotease (PrpL) encoded by a PvdS-regulated gene in Pseudomonas aeruginosa. Infect Immun 69:5385–5394CrossRefPubMedGoogle Scholar
  55. Wolfgang M, van Putten JP, Hayes SF, Dorward D, Koomey M (2000) Components and dynamics of fiber formation define a ubiquitous biogenesis pathway for bacterial pili. EMBO J 19:6408–6418CrossRefPubMedGoogle Scholar
  56. Yahr TL, Goranson J, Frank DW (1996) Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway. Mol Microbiol 22:991–1003PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Medical Microbiology and Infection ControlVU University Medical CentreAmsterdamThe Netherlands

Personalised recommendations