Archives of Microbiology

, Volume 179, Issue 5, pp 339–353 | Cite as

Exploring the Penicillium marneffei genome

  • Kwok-yung Yuen
  • Géraldine Pascal
  • Samson S. Y. Wong
  • Philippe Glaser
  • Patrick C. Y. Woo
  • Frank Kunst
  • James J. Cai
  • Elim Y. L. Cheung
  • Claudine Médigue
  • Antoine Danchin
Original Paper

Abstract

Penicillium marneffei is a dimorphic fungus that intracellularly infects the reticuloendothelial system of humans and bamboo rats. Endemic in Southeast Asia, it infects 10% of AIDS patients in this region. The absence of a sexual stage and the highly infectious nature of the mould-phase conidia have impaired studies on thermal dimorphic switching and host-microbe interactions. Genomic analysis, therefore, could provide crucial information. Pulsed-field gel electrophoresis of genomic DNA of P. marneffei revealed three or more chromosomes (5.0, 4.0, and 2.2 Mb). Telomeric fingerprinting revealed 6–12 bands, suggesting that there were chromosomes of similar sizes. The genome size of P. marneffei was hence about 17.8–26.2 Mb. G+C content of the genome is 48.8 mol%. Random exploration of the genome of P. marneffei yielded 2303 random sequence tags (RSTs), corresponding to 9% of the genome, with 11.7, 6.3, and 17.4% of the RSTs having sequence similarity to yeast-specific sequences, non-yeast fungus sequences, and both (common sequences), respectively. Analysis of the RSTs revealed genes for information transfer (ribosomal protein genes, tRNA synthetase subunits, translation initiation, and elongation factors), metabolism, and compartmentalization, including several multi-drug-resistance protein genes and homologues of fluconazole-resistance gene. Furthermore, the presence of genes encoding pheromone homologues and ankyrin repeat-containing proteins of other fungi and algae strongly suggests the presence of a sexual stage that presumably exists in the environment.

Keywords

Penicillium marneffei Genome Genomic analysis 

References

  1. Alexander J, Satoskar AR, Russell DG (1999) Leishmania species: models of intracellular parasitism. J Cell Sci 112:2993–3002PubMedGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  3. Barzu, O, Danchin A (1994) Adenylyl cyclases: a heterogeneous class of ATP-utilizing enzymes. Prog Nucleic Acid Res Mol Biol 49:241–283PubMedGoogle Scholar
  4. Borneman AR, Hynes MJ, Andrianopoulos A (2001) An STE12 homolog from the asexual, dimorphic fungus Penicillium marneffei complements the defect in sexual development of an Aspergillus nidulans steA mutant. Genetics 157:1003–1014PubMedGoogle Scholar
  5. Cao L, Chan CM, Lee C, Wong SS, Yuen KY (1998) MP1 encodes an abundant and highly antigenic cell wall mannoprotein in the pathogenic fungus Penicillium marneffei. Infect. Immun 66:966–973PubMedGoogle Scholar
  6. Cao L, Chen DL, Lee C, Chan CM, Chan KM, Vanittanakom N, Tsang DN, Yuen KY (1998) Detection of specific antibodies to an antigenic mannoprotein for diagnosis of Penicillium marneffei penicilliosis. J Clin Microbiol 36:3028–3031PubMedGoogle Scholar
  7. Cao L, Chan KM, Chen D, Vanittanakom N, Lee C, Chan CM, Sirisanthana T, Tsang DN, Yuen KY (1999) Detection of cell wall mannoprotein Mp1p in culture supernatants of Penicillium marneffei and in sera of penicilliosis patients. J Clin Microbiol 37:981–986PubMedGoogle Scholar
  8. Chariyalertsak S, Vanittanakom P, Nelson KE, Sirisanthana T, Vanittanakom N (1996) Rhizomys sumatrensis and Cannomys badius, new natural animal hosts of Penicillium marneffei. J Med Vet Mycol 34:105–110PubMedGoogle Scholar
  9. Chariyalertsak S, Sirisanthana T, Supparatpinyo K, Praparattanapan J, Nelson KE (1997) Case-control study of risk factors for Penicillium marneffei infection in human immunodeficiency virus-infected patients in northern Thailand. Clin Infect Dis 24:1080–1086PubMedGoogle Scholar
  10. Chavez R, Fierro F, Gordillo F, Francisco Martin J, Eyzaguirre J (2001) Electrophoretic karyotype of the filamentous fungus Penicillium purpurogenum and chromosomal location of several xylanolytic genes. FEMS Microbiol Lett 205:379–383CrossRefPubMedGoogle Scholar
  11. Chim CS, Fong CY, Ma SK, Wong SS, Yuen KY (1998) Reactive hemophagocytic syndrome associated with Penicillium marneffei infection. Am J Med 104:196–197CrossRefPubMedGoogle Scholar
  12. Cimon, B, Carrere J, Chazalette JP, Vinatier JF, Chabasse D, Bouchara JP (1999) Chronic airway colonization by Penicillium emersonii in a patient with cystic fibrosis. Med Mycol 37:291–293CrossRefPubMedGoogle Scholar
  13. Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, Honore N, Garnier T, Churcher C, Harris D, Mungall D, Basham D, Brown D, Chillingworth T, Connor R, Davies RM, Devlin K, Duthoy S, Feltwell T, Fraser A, Hamlin N, Holroyd S, Hornsby T, Jagels K, Lacroix C, Maclean J, Moule S, Murphy L, Oliver K, Quail MA, Rajandream MA, Rutherford KM, Rutter S, Seeger K, Simon S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Taylor K, Whitehead S, Woodward JR, and Barrell BG (2001) Massive gene decay in the leprosy bacillus. Nature 409:1007–1011PubMedGoogle Scholar
  14. Danchin A (1989) Homeotopic transformation and the origin of translation. Prog Biophys Mol Biol 54:81–86CrossRefPubMedGoogle Scholar
  15. Deng ZL, Connor DH (1985) Progressive disseminated penicilliosis caused by Penicillium marneffei. Report of eight cases and differentiation of the causative organism from Histoplasma capsulatum. Am J Clin Pathol 84:323–327PubMedGoogle Scholar
  16. Espitia C, Laclette JP, Mondragon-Palomino M, Amador A, Campuzano J, Martens A, Singh M, Cicero R, Zhang Y, Moreno C (1999) The PE-PGRS glycine-rich proteins of Mycobacterium tuberculosis: a new family of fibronectin-binding proteins? Microbiology 145:3487–3495PubMedGoogle Scholar
  17. Farber P, Geisen R (2000) Karyotype of Penicillium nalgiovense and assignment of the penicillin biosynthetic genes to chromosome IV. Int J Food Microbiol 58:59–63CrossRefPubMedGoogle Scholar
  18. Fierro F, Gutierrez S, Diez B, Martin JF (1993) Resolution of four large chromosomes in penicillin-producin filamentous fungi: the penicillin gene cluster is located on chromosome II (9.6 Mbp) in Penicillium notatum and chromosome I (10.4 Mbp) in Penicillium chrysogenum. Mol Gen Genet 241:573–578Google Scholar
  19. Frangeul L, Nelson KE, Buchrieser C, Danchin A, Glaser P, Kunst F (1999) Cloning and assembly strategies in microbial genome projects. Microbiology 145:2625–2634PubMedGoogle Scholar
  20. Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM (1995) The minimal gene complement of Mycoplasma genitalium. Science 270:397–403PubMedGoogle Scholar
  21. Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, Gwinn M, Hickey EK, Clayton R, Ketchum KA, Sodergren E, Hardham JM, McLeod MP, Salzberg S, Peterson J, Khalak H, Richardson D, Howell JK, Chidambaram M, Utterback T, McDonald L, Artiach P, Bowman C, Cotton MD, Venter JC (1998) Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281:375–388PubMedGoogle Scholar
  22. Glemet E, Codani JJ (1997) LASSAP, a LArge Scale Sequence compArison Package. Comput Appl Biosci 13:137–143PubMedGoogle Scholar
  23. Hamilton AJ, Jeavons L, Youngchim S, Vanittanakom N, Hay RJ (1998) Sialic acid-dependent recognition of laminin by Penicillium marneffei conidia. Infect Immun 66:6024–6026PubMedGoogle Scholar
  24. Hamilton AJ, Jeavons L, Youngchim S, Vanittanakom N (1999) Recognition of fibronectin by Penicillium marneffei conidia via a sialic acid-dependent process and its relationship to the interaction between conidia and laminin. Infect Immun 67:5200–5205PubMedGoogle Scholar
  25. Himmelreich R., Hilbert H, Plagens H, Pirkl E, Li BC, Herrmann R (1996) Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res 24:4420–4449CrossRefPubMedGoogle Scholar
  26. Imwidthaya P, Thipsuvan K, Chaiprasert A, Danchaivijitra S, Sutthent R, Jearanaisilavong J (2001) Penicillium marneffei: types and drug susceptibility. Mycopathologia 149:109–115CrossRefPubMedGoogle Scholar
  27. Kao LR, Peterson J, Ji R, Bender L, Bender A (1996) Interactions between the ankyrin repeat-containing protein Akr1p and the pheromone response pathway in Saccharomyces cerevisiae. Mol Cell Biol 16:168–178PubMedGoogle Scholar
  28. Kappe R., Fauser C, Okeke CN, Maiwald M (1996) Universal fungus-specific primer systems and group-specific hybridization oligonucleotides for 18S rDNA. Mycoses 39:25–30PubMedGoogle Scholar
  29. Kayser T, Schulz G (1991) Electrophoretic karyotype of cellulolytic Penicillium janthinellum strains. Curr Genet 20:289–291PubMedGoogle Scholar
  30. Kondrashov AS (1994) Muller' ratchet under epistatic selection. Genetics 136:1469–1473PubMedGoogle Scholar
  31. Kwan EY, Lau YL, Yuen KY, Jones BM, Low LC (1997) Penicillium marneffei infection in a non-HIV infected child. J Paediatr Child Health 33:267–271PubMedGoogle Scholar
  32. Lo CY, Chan DT, Yuen KY, Li FK, Cheng KP (1995) Penicillium marneffei infection in a patient with SLE. Lupus 4:229–231PubMedGoogle Scholar
  33. LoBuglio KF, Taylor JW (1995) Phylogeny and PCR identification of the human pathogenic fungus Penicillium marneffei. J Clin Microbiol 33:85–89PubMedGoogle Scholar
  34. Pryciak PM, Hartwell LH (1996) AKR1 encodes a candidate effector of the G βγ complex in the Saccharomyces cerevisiae pheromone response pathway and contributes to control of both cell shape and signal transduction. Mol Cell Biol 16:2614–2626PubMedGoogle Scholar
  35. Stachelhaus T, Marahiel MA (1995) Modular structure of peptide synthetases revealed by dissection of the multifunctional enzyme GrsA. J Biol Chem 270:6163–6169PubMedGoogle Scholar
  36. Stoesser G, Baker W, Van den Broek A, Camon E, Garcia-Pastor M, Kanz C, Kulikova T, Lombard V, Lopez R, Parkinson H, Redaschi N, Sterk P, Stoehr P, Tuli MA (2001) The EMBL nucleotide sequence database. Nucleic Acids Res 29:17–21PubMedGoogle Scholar
  37. Supparatpinyo K, Khamwan C, Baosoung V, Nelson KE, Sirisanthana T (1994) Disseminated Penicillium marneffei infection in southeast Asia. Lancet 344:110–113PubMedGoogle Scholar
  38. Udagawa S, Furuya K, Horie Y (1973) Mycological reports from New Guinea and the Solomon Islands (compiled by Y. Kobayasi). 19. Notes on some ascomycetous microfungi from soil. Bull. Natl Sci Mus Tokyo 16:503–520Google Scholar
  39. Vanittanakom N, Merz WG, Sittisombut N, Khamwan C, Nelson KE, Sirisanthana T (1998) Specific identification of Penicillium marneffei by a polymerase chain reaction/hybridization technique. Med Mycol 36:169–175PubMedGoogle Scholar
  40. Verweij PE, Meis JF, Van den Hurk P, Zoll J, Samson RA, Melchers WJ (1995) Phylogenetic relationships of five species of Aspergillus and related taxa as deduced by comparison of sequences of small subunit ribosomal RNA. J Med Vet Mycol 33:185–190PubMedGoogle Scholar
  41. Wong KH, Lee SS (1998) Comparing the first and second hundred AIDS cases in Hong Kong. Singapore Med J 39:236–240PubMedGoogle Scholar
  42. Wong LP, Woo PC, Wu, AY, Yuen KY (2002) DNA immunization using a secreted cell wall antigen Mp1p is protective against Penicillium marneffei infection. Vaccine 20:2878–2886CrossRefPubMedGoogle Scholar
  43. Wong SS, Siau H, Yuen KY (1999) Penicilliosis marneffei—West meets East. J Med Microbiol 48:973–975PubMedGoogle Scholar
  44. Wong SS, Ho TY, Ngan AH, Woo PC, Que TL, Yuen KY (2001a) Biotyping of Penicillium marneffei reveals concentration-dependent growth inhibition by galactose. J Clin Microbiol 39:1416–1421CrossRefPubMedGoogle Scholar
  45. Wong SS, Wong KH, Hui WT, Lee SS, Lo JY, Cao L, Yuen KY (2001b) Differences in clinical and laboratory diagnostic characteristics of penicilliosis marneffei in human immunodeficiency virus (HIV)- and non-HIV-infected patients. J Clin Microbiol 39:4535–4540CrossRefPubMedGoogle Scholar
  46. Wong SS, Woo PC, Yuen KY (2001c) Candida tropicalis and Penicillium marneffei mixed fungaemia in a patient with Waldenstrom's macroglobulinaemia. Eur J Clin Microbiol Infect Dis 20:132–135CrossRefPubMedGoogle Scholar
  47. Wu S, Guo N, Yin Z, Chai J. (1996) Characterization of pathogenic fungi genomes using pulsed field gel electrophoresis. Chin Med Sci J 11:188–190PubMedGoogle Scholar
  48. Young C, Itoh Y, Johnson R, Garthwaie I, Miles CO, Munday-Finch SC, Scott B (1998) Paxilline-negative mutants of Penicillium paxilli generated by heterologous and homologous plasmid integration. Curr Genet 33:368–377PubMedGoogle Scholar
  49. Yuen KY, Wong SS, Tsang DN, Chau PY (1994) Serodiagnosis of Penicillium marneffei infection. Lancet 344:444–445PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Kwok-yung Yuen
    • 1
    • 2
  • Géraldine Pascal
    • 3
  • Samson S. Y. Wong
    • 2
  • Philippe Glaser
    • 4
  • Patrick C. Y. Woo
    • 2
  • Frank Kunst
    • 4
  • James J. Cai
    • 2
  • Elim Y. L. Cheung
    • 2
  • Claudine Médigue
    • 5
  • Antoine Danchin
    • 1
    • 3
  1. 1.HKU-Pasteur Research CentreHong Kong
  2. 2.Department of MicrobiologyThe University of Hong KongHong Kong
  3. 3.Unité Génétique des Génomes BactériensInstitut PasteurParis Cedex 15France
  4. 4.Laboratory of Pathogenic Microbial GenomesInstitut PasteurParis Cedex 15France
  5. 5.Genoscope and CNRS UMR-8030Evry CedexFrance

Personalised recommendations