ANFIS current–voltage controlled MPPT algorithm for solar powered brushless DC motor based water pump

  • A. Alice Hepzibah
  • K. PremkumarEmail author
Original Paper


In this paper, adaptive neuro-fuzzy inference system and proportional integral controller-based maximum power point tracking algorithm are presented for solar powered brushless DC motor for water pumping application. Adaptive neuro-fuzzy inference with PI controller provides control gain to maximum power point tracker. It adjusts the duty cycle of the zeta converter for extracting maximum power from solar PV array. The performance of proposed controller is compared with the conventional perturb and observe method, fuzzy perturb and observe method and incremental conductance method. Simulation studies are carried out in MATLAB. The experimental verification is shown to prove the suitability and feasibility of the proposed controller. The results reveal that the adaptive fuzzy inference system with PI controller quickly tracks maximum power from solar PV array under different irradiance.


Maximum power point tracking ANFIS PI controller Solar PV array 



  1. 1.
    Solangi KH, Islam MR, Saidur R, Rahim NA, Fayaz H (2011) A review on global solar energy policy. Renew Sustain Energy Rev 15(4):2149–2163CrossRefGoogle Scholar
  2. 2.
    Gul M, Kotak Y, Muneer T (2016) Review on recent trend of solar photovoltaic technology. Energy Explor Exploit 34(4):485–526CrossRefGoogle Scholar
  3. 3.
    Cengiz MS, Mamiş MS (2015) Price–efficiency relationship for photovoltaic systems on a global basis. Int J Photoenergy. Article ID 256101. 2015. CrossRefGoogle Scholar
  4. 4.
    Mukti RJ, Islam A (2015) Modeling and performance analysis of PV module with maximum power point tracking in Matlab/Simulink. Appl Solar Energy 51(4):245–252CrossRefGoogle Scholar
  5. 5.
    Dadjé A, Djongyang N, Kana JD, Tchinda R (2016) Maximum power point tracking methods for photovoltaic systems operating under partially shaded or rapidly variable insolation conditions: a review paper. Int J Sustain Eng 9(4):224–239CrossRefGoogle Scholar
  6. 6.
    Alik R, Jusoh A (2017) Modified perturb and observe (P&O) with checking algorithm under various solar irradiation. Sol Energy 148:128–139CrossRefGoogle Scholar
  7. 7.
    Tofoli FL, de Castro Pereira D, de Paula WJ (2015) Comparative study of maximum power point tracking techniques for photovoltaic systems. Int J Photoenergy. Article ID 812582. CrossRefGoogle Scholar
  8. 8.
    Gosumbonggot J (2016) Maximum power point tracking method using perturb and observe algorithm for small scale DC voltage converter. Procedia Comput Sci 86:421–424CrossRefGoogle Scholar
  9. 9.
    Putri R, Wibowo S, Rifa M (2015) Maximum power point tracking for photovoltaic using incremental conductance method. Energy Procedia 68:22–30CrossRefGoogle Scholar
  10. 10.
    Visweswara K (2014) An investigation of incremental conductance based maximum power point tracking for photovoltaic system. Energy Procedia 54:11–20CrossRefGoogle Scholar
  11. 11.
    Lyden S, Haque ME (2015) Maximum power point tracking techniques for photovoltaic systems: a comprehensive review and comparative analysis. Renew Sustain Energy Rev 52:1504–1518CrossRefGoogle Scholar
  12. 12.
    Anurag A, Bal S, Sourav S, Nanda M (2016) A review of maximum power-point tracking techniques for photovoltaic systems. Int J Sustain Energy 35(5):478–501CrossRefGoogle Scholar
  13. 13.
    Nabipour M, Razaz M, Seifossadat SGH, Mortazavi SS (2017) A new MPPT scheme based on a novel fuzzy approach. Renew Sustain Energy Rev 74:1147–1169CrossRefGoogle Scholar
  14. 14.
    Ozdemir S, Altin N, Sefa I (2017) Fuzzy logic based MPPT controller for high conversion ratio quadratic boost converter. Int J Hydrog Energy 42(28):17748–17759CrossRefGoogle Scholar
  15. 15.
    Messalti S, Harrag A, Loukriz A (2017) A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation. Renew Sustain Energy Rev 68(1):221–233CrossRefGoogle Scholar
  16. 16.
    Boumaaraf H, Talha A, Bouhali O (2015) A three-phase NPC grid-connected inverter for photovoltaic applications using neural network MPPT. Renew Sustain Energy Rev 49:1171–1179CrossRefGoogle Scholar
  17. 17.
    Belhachat F, Larbes C (2017) Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions. Renew Sustain Energy Rev 77:875–889CrossRefGoogle Scholar
  18. 18.
    Premkumar K, Manikandan BV (2014) Adaptive Neuro Fuzzy Inference System based speed controller for brushless DC motor. Neurocomputing 138:260–270CrossRefGoogle Scholar
  19. 19.
    Premkumar K, Manikandan BV (2018) Stability and performance analysis of ANFIS tuned PID based speed controller for brushless DC motor. Curr Signal Transduct Ther 13(1):19–30CrossRefGoogle Scholar
  20. 20.
    Rathi KJ, Ali MS (2016) NFC design using ANFIS for power electronics circuits. Int J Innov Res Electr Electron Instrum Control Eng 4(3):9–12Google Scholar
  21. 21.
    Mozaffari Niapour SAKH, Danyali S, Sharifian MBB, Feyzi MR (2011) Brushless DC motor drives supplied by PV power system based on Z-source inverter and FL-IC MPPT controller. Energy Convers Manag 52(8–9):3043–3059CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Rajalakshmi Engineering CollegeChennaiIndia

Personalised recommendations